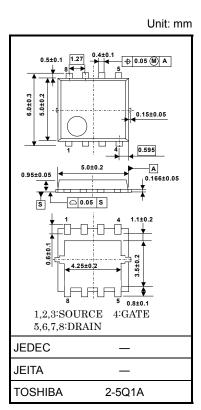
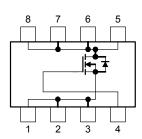
TOSHIBA Field Effect Transistor Silicon N-Channel MOS Type (U-MOS V-H)


TPCA8012-H

High Efficiency DC/DC Converter Applications
Notebook PC Applications
Portable Equipment Applications

- Small footprint due to a small and thin package
- High speed switching
- Small gate charge: QSW = 11 nC (typ.)
- Low drain-source ON-resistance: R_{DS} (ON) = 3.7 m Ω (typ.)
- High forward transfer admittance: $|Y_{fs}| = 103 \text{ S (typ.)}$
- Low leakage current: $IDSS = 10 \mu A (max) (VDS = 30 V)$
- Enhancement mode: $V_{th} = 1.5$ to 2.5 V ($V_{DS} = 10$ V, $I_{D} = 1$ mA)


Absolute Maximum Ratings (Ta = 25°C)

Characte	eristic	Symbol	Rating	Unit	
Drain-source voltage		V_{DSS}	30	V	
Drain-gate voltage (R	$k_{GS} = 20 \text{ k}\Omega$)	V_{DGR}	30	V	
Gate-source voltage		V_{GSS}	±20	V	
Drain current	DC (Note 1)	I _D	40	Α	
Diam current	Pulsed (Note 1)	I _{DP}	120	^	
Drain power dissipati	on (Tc=25°C)	P_{D}	45	W	
Drain power dissipati	on $(t = 10 s)$ (Note 2a)	P_{D}	2.8	W	
Drain power dissipati	on (t = 10 s) (Note 2b)	P _D	1.6	W	
Single-pulse avalanche energy (Note 3)		E _{AS}	208	mJ	
Avalanche current		I _{AR}	40	Α	
Repetitive avalanche energy (Tc=25°C) (Note 4)		E _{AR}	4.5	mJ	
Channel temperature		T _{ch}	150	°C	
Storage temperature	range	T _{stg}	-55 to 150	°C	

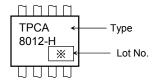
Weight: 0.069 g (typ.)

Circuit Configuration

Note: For Notes 1 to 4, refer to the next page.

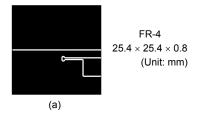
Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum ratings. Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook ("Handling Precautions"/"Derating Concept and Methods") and individual reliability data (i.e. reliability test report and estimated failure rate, etc).

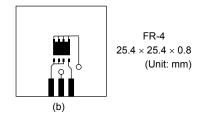
This transistor is an electrostatic-sensitive device. Handle with care.


2007-12-26

Thermal Characteristics

Characteristic	Symbol	Max	Unit
Thermal resistance, channel to case (Tc=25°C)	R _{th (ch-c)}	2.78	°C/W
Thermal resistance, channel to ambient (t = 10 s) (Note 2a)	R _{th (ch-a)}	44.6	°C/W
Thermal resistance, channel to ambient (t = 10 s) (Note 2b)	R _{th (ch-a)}	78.1	°C/W

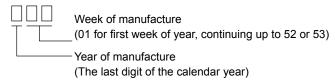

Marking (Note 5)



Note 1: The channel temperature should not exceed 150°C during use.

Note 2: (a) Device mounted on a glass-epoxy board (a)

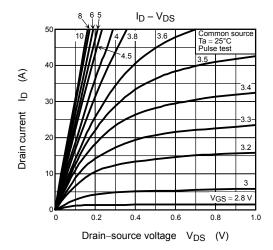
(b) Device mounted on a glass-epoxy board (b)

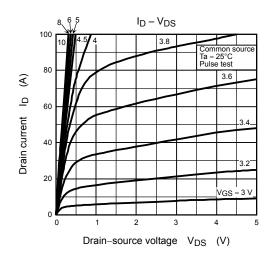


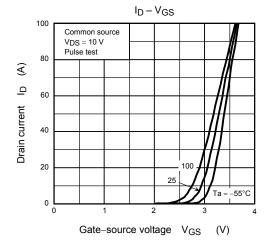
Note 3: $~V_{DD}=24~V,~T_{Ch}=25^{\circ}C$ (initial), $L=100~\mu H,~R_{G}=25~\Omega,~I_{AR}=40~A$

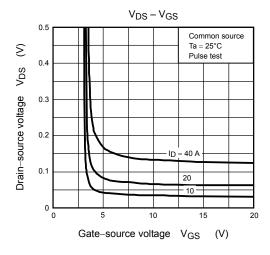
Note 4: Repetitive rating: pulse width limited by max. channel temperature

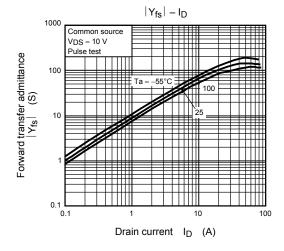
Note 5: * Weekly code: (Three digits)

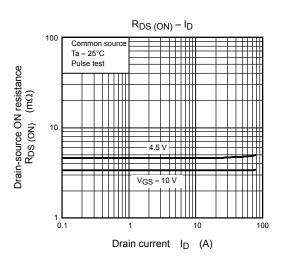


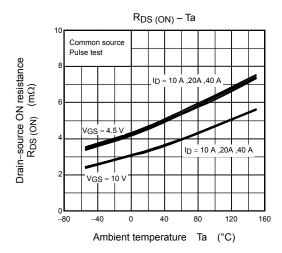

Electrical Characteristics (Ta = 25°C)

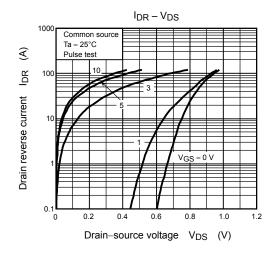

Characteristic		Symbol	Test Condition	Min	Тур.	Max	Unit
Gate leakage cu	rrent	I _{GSS}	$V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}$	_	_	±100	nA
Drain cutoff curre	ent	I _{DSS}	V _{DS} = 30 V, V _{GS} = 0 V	_	_	10	μА
Drain-source bre	akdown voltago	V (BR) DSS	$I_D = 10 \text{ mA}, V_{GS} = 0 \text{ V}$	30	_	_	V
Diain-source bre	akdown voitage	V _{(BR) DSX}	$I_D = 10 \text{ mA}, V_{GS} = -20 \text{ V}$	— — 30 — 15 — 1.5 — 5.1 6.8 — 3.7 4.9 52 52 103 — 2900 3713 — 170 255 — 628 — 1.5 — 4.2 — 14 — 8.3	V		
Gate threshold v	oltage	V _{th}	$V_{DS} = 10 \text{ V}, I_{D} = 1 \text{ mA}$	1.5	_	2.5	V
Drain-source ON	ragiotanas	Dec (cu)	$V_{GS} = 4.5 \text{ V}, I_D = 20 \text{ A}$	_	5.1	6.8	- mΩ
Diam-source ON	-resistance	R _{DS} (ON)	V _{GS} = 10 V, I _D = 20 A	_	3.7	4.9	
Forward transfer	admittance	Y _{fs}	V _{DS} = 10 V, I _D = 20 A	52	103	_	S
Input capacitance	e	C _{iss}		_	2900	3713	
Reverse transfer capacitance		C _{rss}	$V_{DS} = 10 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$	_	170	255	pF
Output capacitance		Coss		_	628	_	
Gate resistance		rg	V _{DS} = 10 V, V _{GS} = 0 V, f = 5 MHz			1.5	Ω
Switching time	Rise time	t _r	VGS 10 V 10	_	4.2	_	- ns
	Turn-on time	t _{on}		_	14	_	
	Fall time	t _f		_	8.3	_	
	Turn-off time	t _{off}		_	42	_	
Total gate charge		0	$V_{DD} \simeq 24 \text{ V}, V_{GS} = 10 \text{ V}, I_D = 40 \text{ A}$	_	42	_	
(gate-source plus	s gate-drain)	Qg	$V_{DD} \simeq 24 \text{ V}, V_{GS} = 5 \text{ V}, I_D = 40 \text{ A}$	_	22	_	
Gate-source charge 1		Q _{gs1}	$V_{DD} \simeq 24 \text{ V}, V_{GS} = 10 \text{ V}, I_D = 40 \text{ A}$	_	10.5	_	nC
Gate-drain ("Miller") charge		Q _{gd}		_	6.0	_	
Gate switch char	ge	Q _{SW}			11.0	_	

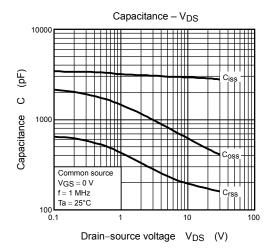

Source-Drain Ratings and Characteristics (Ta = 25°C)

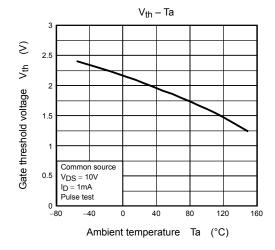

Characteristic		Symbol	Test Condition	Min	Тур.	Max	Unit	
Drain reverse current	Pulse	(Note 1)	I_{DRP}	_	_	_	120	Α
Forward voltage (diode)			V _{DSF}	$I_{DR} = 40 \text{ A}, V_{GS} = 0 \text{ V}$		_	-1.2	V

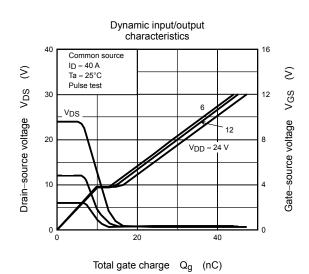


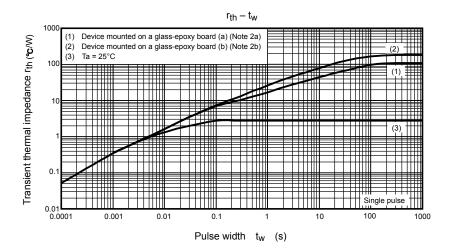


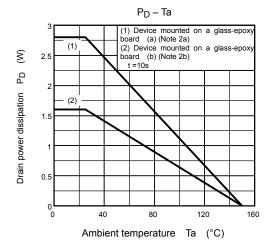


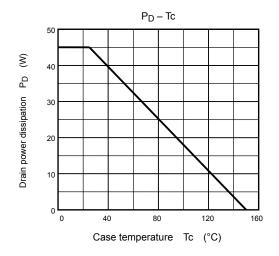


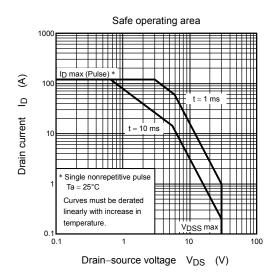



4 2007-12-26









5 2007-12-26

6 2007-12-26

RESTRICTIONS ON PRODUCT USE

20070701-EN

- The information contained herein is subject to change without notice.
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
 In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc.
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in his document shall be made at the customer's own risk.
- The products described in this document shall not be used or embedded to any downstream products of which manufacture, use and/or sale are prohibited under any applicable laws and regulations.
- Please contact your sales representative for product-by-product details in this document regarding RoHS
 compatibility. Please use these products in this document in compliance with all applicable laws and regulations
 that regulate the inclusion or use of controlled substances. Toshiba assumes no liability for damage or losses
 occurring as a result of noncompliance with applicable laws and regulations.

2007-12-26