DDR Termination Regulator

General Description

The RT9088A is a sink/source tracking termination regulator. It is specifically designed for low-cost and low-external component count systems. The RT9088A possesses a high speed operating amplifier that provides fast load transient response and only requires a minimum 30μ F ceramic output capacitor. The RT9088A supports remote sensing functions and all features required to power the DDRIII and Low Power DDRIII / DDRIV VTT bus termination according to the JEDEC specification. In addition, the RT9088A provides an open-drain PGOOD signal to monitor the output regulation and an EN signal that can be used to discharge VTT during S3 (suspend to RAM) for DDR applications.

The RT9088A is available in the thermal efficient package, WDFN-10L 3x3.

Features

- VIN Input Voltage Range: 1.1V to 3.5V
- VCNTL Input Voltage Range: 2.9V to 5.5V
- Support Ceramic Capacitors
- Power Good Indicator
- 10mA Source/Sink Reference Output
- Meet DDRI, DDRII JEDEC Spec
- Support DDRIII, Low Power DDRIII/DDRIV VTT Applications
- Soft-Start Function
- UVLO and OCP Protection
- Thermal Shutdown

Applications

- Notebook/Desktop/Server
- Telecom/Datacom, GSM Base Station, LCD-TV/PDP-TV, Copier/Printer, Set-Top Box

Marking Information

8J=YM DNN 8J= : Product Code YMDNN : Date Code

Simplified Application Circuit

Ordering Information

RT9088A

Package Type QW : WDFN-10L 3x3 (W-Type) — Lead Plating System

G : Green (Halogen Free and Pb Free)

Note :

Richtek products are :

- RoHS compliant and compatible with the current requirements of IPC/JEDEC J-STD-020.
- Suitable for use in SnPb or Pb-free soldering processes.

Pin No. Pin Name **Pin Function** 1 REFIN Reference input. 2 VIN Power input of the regulator. 3 VOUT Power output of the regulator. 4 PGND Power ground of the regulator. Voltage sense input for the regulator. Connect to positive terminal of the output 5 SENSE capacitor or the load. 6 REFOUT Reference output. Connect to GND through a 0.1µF ceramic capacitor. Enable control input. For DDR VTT application, connect EN to SLP S3. For 7 EN other applications, use EN as the ON/OFF function. 8 GND Analog ground. Connect to negative terminal of the output capacitor. Power good open-drain output. Connect a pull-up resistor between this pin and 9 PGOOD VCNTL pin. Control voltage input. Connect this pin to the 3.3V or 5V power supply. A 4.7µF VCNTL 10 ceramic decoupling capacitor is required. Exposed pad. The exposed pad is internally unconnected and must be 11 (Exposed Pad) PAD soldered to a large PGND plane. Connect this PGND plane to other layers with thermal vias to help dissipate heat from the device.

Functional Pin Description

Pin Configuration

WDFN-10L 3x3

Functional Block Diagram

Operation

The RT9088A is a linear sink/source DDR termination regulator with current capability up to 3A. The RT9088A builds in a high-side N-MOSFET which provides current sourcing and a low-side N-MOSFET which provides current sinking. All the control circuits are supplied by the power VCNTL. In normal operation, the error amplifier OP adjusts the gate driving voltage of the power MOSFET to achieve SENSE voltage well tracking the REFIN voltage.

Both the source and sink currents are detected by the internal sensing resistor, and the OCP function will work to limit the current to a designed value when overload happens. Furthermore, the current will be folded back to be one half if VOUT is out of the power good window.

Buffer

This function provides REFOUT output level which is equal to REFIN level with 10mA source/sink current capability.

Power Good

When the SENSE voltage is in the power good window and lasts for a certain delay time, then the PGOOD pin will be high impedance and the PGOOD voltage will be pulled high by the external resistor.

Control Logic

This block includes VCNTL UVLO, REFIN UVLO and Enable/Disable functions, and provides logic control to the whole chip.

Thermal Protection

Both the high-side and low-side power MOSFETs will be turned off when the junction temperature is higher than typically 160°C, and be released to normal operation when junction temperature falls below 120°C typically.

RT9088A

Absolute Maximum Ratings (Note 1)

 Supply Voltage, VIN, VCNTL	
Output Voltage, VOUT, REFOUT, PGOOD	
• Power Dissipation, $P_D @ T_A = 25^{\circ}C$	
WDFN-10L 3x3	- 3.27W
Package Thermal Resistance (Note 2)	
WDFN-10L 3x3, θ _{JA}	- 30.5°C/W
WDFN-10L 3x3, θ_{JC}	- 7.5°C/W
• Lead Temperature (Soldering, 10 sec.)	- 260°C
• Junction Temperature	- 150°C
Storage Temperature Range	- –65°C to 150°C
ESD Susceptibility (Note 3)	
HBM (Human Body Model)	- 2kV

Recommended Operating Conditions (Note 4)

Control Input Voltage, VCNTL	2.9V to 5.5V
Supply Input Voltage, VIN	1.1V to 3.5V
Junction Temperature Range	–40°C to 125°C
Ambient Temperature Range	–40°C to 85°C

Electrical Characteristics

 $(V_{\text{IN}} = 1.5\text{V}, V_{\text{EN}} = V_{\text{CNTL}} = 3.3\text{V}, V_{\text{REFIN}} = V_{\text{SENSE}} = 0.75\text{V}, C_{\text{OUT}} = 10\mu\text{F x } 3, T_{\text{A}} = 25^{\circ}\text{C}, \text{ unless otherwise specified})$

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Supply Current						
VCNTL Supply Current	I _{VCNTL}	V _{EN} = V _{CNTL} , No Load		0.7	1	mA
VCNTL Shutdown Current		V _{EN} = 0V, V _{REFIN} = 0V, No Load		65	80	μA
	ISHDN_VCNTL	V_{EN} = 0V, V_{REFIN} > 0.4V, No Load		200	400	μΑ
VIN Supply Current	I _{VIN}	V _{EN} = V _{CNTL} , No Load		1	50	μΑ
VIN Shutdown Current	I _{SHDN_VIN}	V _{EN} = 0V, No Load		0.1	50	μΑ
Output	•	•				•
VTT Output Voltage	Vout	V _{IN} = 1.5V, V _{REFIN} = 0.75V, I _{OUT} = 0A		0.75		V
		V _{IN} = 1.35V, V _{REFIN} = 0.675V, I _{OUT} = 0A		0.675		V
		V _{IN} = 1.2V, V _{REFIN} = 0.6V, I _{OUT} = 0A		0.6		V
		I _{OUT} = ±2A, V _{LDOIN} = 1.5V, V _{REFOUT} = 0.75V	-25		25	
REFIN, VTT Output Voltage Offset	Vout_os	I _{OUT} = ±2A, V _{LDOIN} = 1.35V, V _{REFOUT} = 0.675V	-25		25	mV
		$I_{OUT} = \pm 2A, V_{LDOIN} = 1.2V,$ $V_{REFOUT} = 0.6V$	-25		25	

RT9088A

Parameter		Symbol	Test Conditions	Min	Тур	Max	Unit	
VOUT Source Curre	nt Limit	ILIM_VOUT_SR	VOUT_SR VOUT in PGOOD Window			5.5	Α	
VOUT Sink Current Limit		ILIM_VOUT_SK	VOUT in PGOOD Window	3.5		5.5	Α	
VOUT Discharge Resistance		Rdischarge	$V_{REFIN} = 0V, V_{OUT} = 0.3V,$ $V_{EN} = 0V$		18	25	Ω	
Power Good Comp	arator	•				-		
			V _{SENSE} lower threshold with respect to REFOUT	-25	-20	-15	-15 25 [%]	
PGOOD Threshold		Vth_pgood	V _{SENSE} upper threshold with respect to REFOUT	15	20	25		
			PGOOD Hysteresis		5			
PGOOD Start-Up De	elay	TPGDELAY1	Start-up rising delay, V _{SENSE} within PGOOD range		2		ms	
Output Low Voltage		VLOW_PGOOD	I _{PGOOD} = 4mA			0.4	V	
PGOOD Falling Dela	ay	T _{PGDELAY2}	Falling delay, V _{SENSE} is out of PGOOD range		10		μS	
Leakage Current		ILEAKAGE _PGOOD	VSENSE = VREFIN (PGOOD high impedance), VPGOOD = VIN + 0.3V	VREFIN (PGOOD edance),		1	μA	
REFIN and REFOU	Г							
REFIN Input Current	t	IREFIN	V _{EN} = V _{CNTL}			1	μA	
REFIN Voltage Rang	je	VREFIN		0.5		1.8	V	
REFIN Under-Voltag	le		REFIN Rising	360	390	420	m\/	
Lockout		VUVLO_REFIN	Hysteresis		20		mV	
			–10mA < I _{REFOUT} < 10mA, V _{REFIN} = 0.75V	-15		15	15	
REFOUT Voltage To to VREFIN	lerance	VTOL_REFOUT	–10mA < I _{REFOUT} < 10mA, V _{REFIN} = 0.675V	-15		15	mV	
			–10mA < I _{REFOUT} < 10mA, V _{REFIN} = 0.6V	-15		15		
REFOUT Source Cu Limit	ırrent	ILIM_REFOUT_SR	V _{REFOUT} = 0V	10	40		mA	
REFOUT Sink Curre	ent Limit	ILIM_REFOUT_SK	V _{REFOUT} = REFIN + 1V	10	40		mA	
UVLO/EN								
UVLO Threshold			Rising	2.5	2.7	2.85	V	
		VUVLO_VCNTL	Hysteresis		120		mV	
EN Input Log	gic-High	V _{IN_H}		1.7			- V	
Voltage Log	gic-Low	V _{IN_L}				0.3		
EN Turn-On Delay		TDELAY	EN turn on to Vout rising (reference Note 5)			7	μS	
Thermal Shutdown								
Thermal Shutdown		T _{SD}	Shutdown Temperature		160		°C	
Threshold		עפי	Hysteresis		15			

RT9088A

- **Note 1.** Stresses beyond those listed "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions may affect device reliability.
- Note 2. θ_{JA} is measured at $T_A = 25^{\circ}C$ on a high effective thermal conductivity four-layer test board per JEDEC 51-7. θ_{JC} is measured at the exposed pad of the package.
- Note 3. Devices are ESD sensitive. Handling precaution is recommended.
- Note 4. The device is not guaranteed to function outside its operating conditions.
- Note 5. t_{DELAY} is the period from EN turn on to V_{OUT} rising as shown in below diagram. While T_{SS} is the rising period of V_{OUT} , the formula used to calculated this rising period is $T_{SS} = (V_{OUT} \times C_{OUT})/I_{LIM}$. It's base on the value of output capacitor C_{OUT} , the settled output voltage V_{OUT} and the output current limit I_{LIM} .

Typical Application Circuit

-

Table 1.	Recommended	External	Components
----------	-------------	----------	------------

Component Description		Vendor P/N		
C1, C5	10µF, 6.3V, X7R, 0805	GRM21BR70J106KE76L (Murata) CGA4J1X7R0J106K125AC (TDK)		
C2	1nF, 50V, X7R, 0603	GCD188R71H102KA01D (Murata) CGA3E2X7R1H102K080AA (TDK)		
C3	0.1µF, 16V, X7R, 0603	GCJ188R71C104KA01D (Murata)		
C4	4.7μF, 6.3V, X5R, 0603	GRT188R60J475ME01D (Murata) CGB3B3X5R0J475M055AB(TDK)		

Typical Operating Characteristics

VCNTL Shutdown Current vs. Temperature

UVLO vs. Temperature Sourcing Current Limit vs. Temperature 4.0 3.5 Current Limit (A) 3.0 2.5 2.0 1.5 Vontl = 3.3V. VIN = VDDQSNS = 1.5V, VOUT = 0.75V 1.0 -25 0 25 50 75 100 125 -50 Temperature (°C)

Copyright @2021 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation.

Application Information

The RT9088A is a 3A sink/source tracking termination regulator. It is specifically designed for low-cost and low-external component count system such as notebook PC applications. The RT9088A possesses a high speed operating amplifier that provides fast load transient response and only requires two 10μ F ceramic input capacitors and three 10μ F ceramic output capacitors.

Capacitor Selection

Good bypassing is recommended from VIN to GND to help improve AC performance. A 10μ F or greater input capacitor placed as close as possible to the IC is recommended. The input capacitor must be placed at a distance of less than 0.5 inches from the VIN pin of the IC.

The 1 μ F ceramic capacitor added close to the VCNTL pin should be kept away from any parasitic impedance from the supply power. For stable operation, the total capacitance of the ceramic capacitor at the VOUT output terminal must be larger than 30 μ F. The RT9088A is designed specifically to work with low ESR ceramic output capacitor in space saving and performance consideration. Larger output capacitance can reduce the noise and improve load transient response, stability and PSRR. The output capacitor should be located near the VOUT output terminal pin as close as possible.

Thermal Considerations

For continuous operation, do not exceed absolute maximum junction temperature. The maximum power dissipation depends on the thermal resistance of the IC package, PCB layout, rate of surrounding airflow, and difference between junction and ambient temperature. The maximum power dissipation can be calculated by the following formula :

 $\mathsf{P}_{\mathsf{D}(\mathsf{MAX})} = (\mathsf{T}_{\mathsf{J}(\mathsf{MAX})} - \mathsf{T}_{\mathsf{A}}) / \theta_{\mathsf{J}\mathsf{A}}$

where $T_{J(MAX)}$ is the maximum junction temperature, T_A is the ambient temperature, and θ_{JA} is the junction to ambient thermal resistance.

For recommended operating condition specifications, the maximum junction temperature is 125°C. The junction to ambient thermal resistance, θ_{JA} , is layout dependent. For WDFN-10L 3x3 package, the thermal resistance, θ_{JA} , is

 30.5° C/W on a standard JEDEC 51-7 four-layer thermal test board. The maximum power dissipation at T_A = 25° C can be calculated by the following formula :

 $P_{D(MAX)}$ = (125°C - 25°C) / (30.5°C/W) = 3.27W for WDFN-10L 3x3 package

The maximum power dissipation depends on the operating ambient temperature for fixed $T_{J(MAX)}$ and thermal resistance, θ_{JA} . The derating curve in Figure 1 allows the designer to see the effect of rising ambient temperature on the maximum power dissipation.

Figure 1. Derating Curve of Maximum Power Dissipation

Outline Dimension

DETAIL A Pin #1 ID and Tie Bar Mark Options

Note : The configuration of the Pin #1 identifier is optional, but must be located within the zone indicated.

Symbol	Dimensions	In Millimeters	Dimensions In Inches		
Symbol	Min	Max	Min	Max	
А	0.700	0.800	0.028	0.031	
A1	0.000	0.050	0.000	0.002	
A3	0.175	0.250	0.007	0.010	
b	0.180	0.300	0.007	0.012	
D	2.950	3.050	0.116	0.120	
D2	2.300	2.650	0.091	0.104	
E	2.950	3.050	0.116	0.120	
E2	1.500	1.750	0.059	0.069	
е	0.500		0.0)20	
L	0.350	0.450	0.014	0.018	

W-Type 10L DFN 3x3 Package

Richtek Technology Corporation

14F, No. 8, Tai Yuen 1st Street, Chupei City Hsinchu, Taiwan, R.O.C. Tel: (8863)5526789

RICHTEK

Richtek products are sold by description only. Richtek reserves the right to change the circuitry and/or specifications without notice at any time. Customers should obtain the latest relevant information and data sheets before placing orders and should verify that such information is current and complete. Richtek cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Richtek product. Information furnished by Richtek is believed to be accurate and reliable. However, no responsibility is assumed by Richtek or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Richtek or its subsidiaries.