

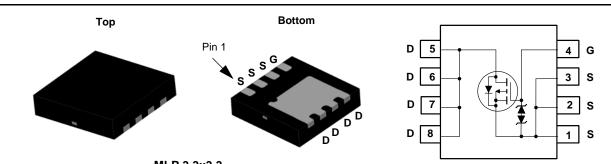
November 2015

FDMC4435BZ

P-Channel Power Trench[®] MOSFET -30 V, -18 A, 20 m Ω

Features

- Max $r_{DS(on)}$ = 20 m Ω at V_{GS} = -10 V, I_D = -8.5 A
- Max $r_{DS(on)}$ = 37 m Ω at V_{GS} = -4.5 V, I_D = -6.3 A
- \blacksquare Extended V_{GSS} range (-25 V) for battery applications
- High performance trench technology for extremely low r_{DS(on)}
- High power and current handling capability
- HBM ESD protection level >7 kV typical (Note 4)
- 100% UIL Tested
- Termination is Lead-free and RoHS Compliant



General Description

This P-Channel MOSFET is produced using Fairchild Semiconductor's advanced Power Trench[®] process that has been especially tailored to minimize the on-state resistance. This device is well suited for Power Management and load switching applications common in Notebook Computers and Portable Battery Packs.

Applications

- High side in DC DC Buck Converters
- Notebook battery power management
- Load switch in Notebook

MLP 3.3x3.3

MOSFET Maximum Ratings T_A = 25 °C unless otherwise noted

Symbol	Parameter			Ratings	Units
V _{DS}	Drain to Source Voltage			-30	V
V _{GS}	Gate to Source Voltage			±25	V
	Drain Current -Continuous	T _C = 25 °C		-18	
I _D	-Continuous	T _A = 25 °C	(Note 1a)	-8.5	Α
	-Pulsed			-50	
E _{AS}	Single Pulse Avalanche Energy		(Note 3)	32	mJ
D	Power Dissipation	T _C = 25 °C		31	w
PD	Power Dissipation	T _A = 25 °C	(Note 1a)	2.3	vv
T _J , T _{STG}	Operating and Storage Junction Tempera	ature Range		-55 to +150	°C

Thermal Characteristics

$R_{ ext{ heta}JC}$	Thermal Resistance, Junction to Case		4	°C/W
$R_{ ext{ heta}JA}$	Thermal Resistance, Junction to Ambient	(Note 1a)	53	C/VV

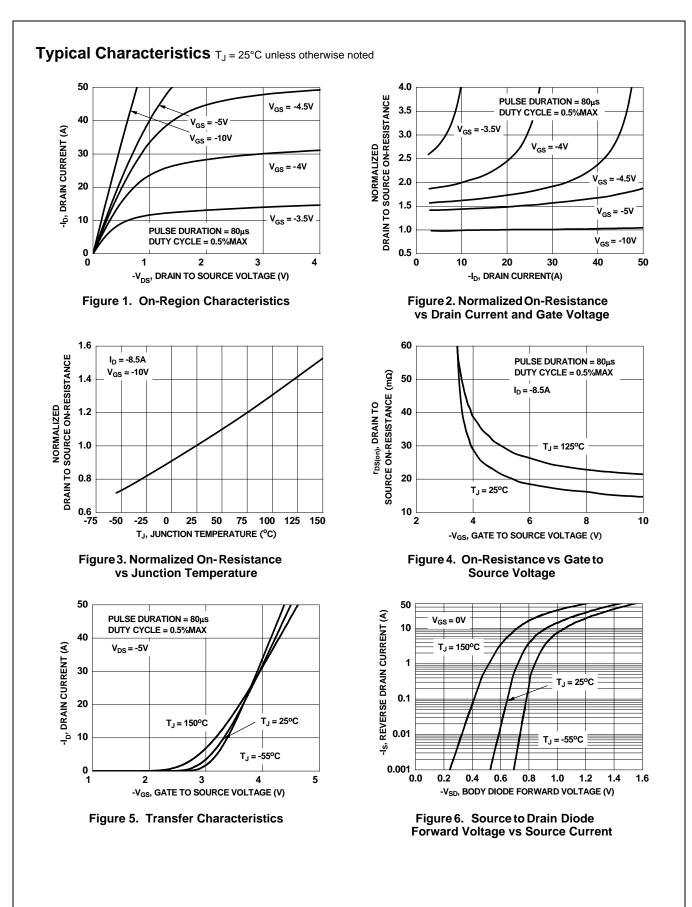
Package Marking and Ordering Information

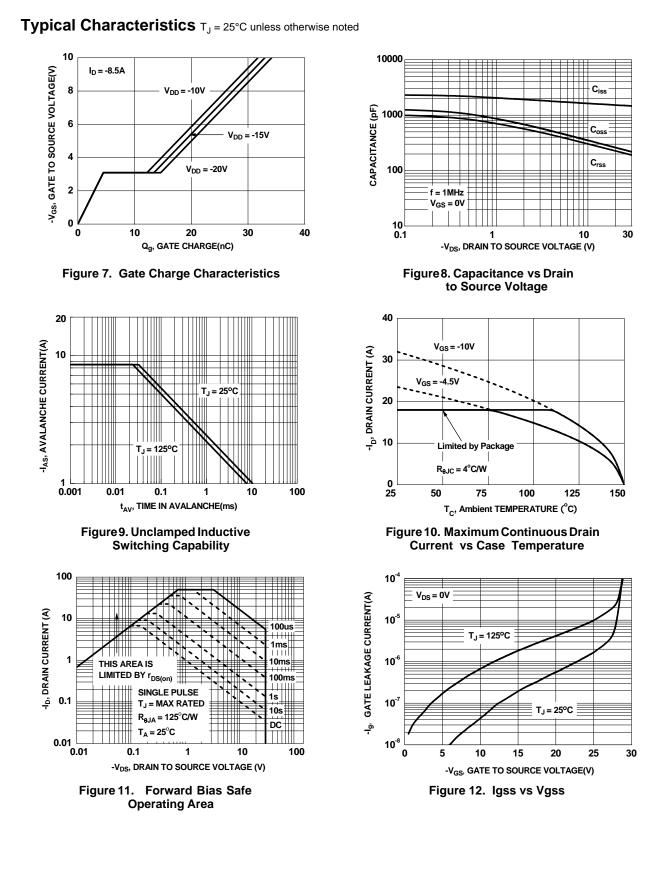
Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FDMC4435BZ	FDMC4435BZ	MLP 3.3X3.3	13 "	12 mm	3000 units

Symbol	Parameter	Test Cond	litions	Min	Тур	Max	Units
Off Chara	cteristics						
BV _{DSS}	Drain to Source Breakdown Voltage	I _D = -250 μA, V _{GS} = 0	0 V	-30			V
$\frac{\Delta BV_{DSS}}{\Delta T_J}$	Breakdown Voltage Temperature Coefficient	$I_D = -250 \ \mu A$, referen			21		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = -24 V, V _{GS} = 0 V,	T _J = 125 °C			-1 -100	μA
I _{GSS}	Gate to Source Leakage Current	$V_{GS} = \pm 25 \text{ V}, \text{ V}_{DS} = 0$	D V			±10	μA
On Chara	cteristics						
V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_{D} = -250$	Ο μΑ	-1.0	-1.8	-3.0	V
$\Delta V_{GS(th)}$ $\Delta T_{.1}$	Gate to Source Threshold Voltage Temperature Coefficient	$I_D = -250 \ \mu$ A, referen			-5		mV/°C
		V _{GS} = -10 V, I _D = -8.		14	20		
r	Static Drain to Source On Resistance	$V_{GS} = -4.5 \text{ V}, \ I_D = -6.3 \text{ A}$ $V_{GS} = -10 \text{ V}, \ I_D = -8.5 \text{ A},$ $T_J = 125 \text{ °C}$			21	37	mΩ
r _{DS(on)}				20	29	11132	
9 _{FS}	Forward Transconductance	$V_{DD} = -5 V, I_D = -8.5 A$			25		S
•	Characteristics	1			4505	0040	- 5
C _{iss}	Input Capacitance Output Capacitance	V _{DS} = -15 V, V _{GS} = 0 V, -f = 1 MHz			1535 310	2040 410	pF pF
C _{oss} C _{rss}	Reverse Transfer Capacitance				280	410	pF
R _q	Gate Resistance	f = 1 MHz			4	420	Ω
0	Characteristics						
t _{d(on)}	Turn-On Delay Time				10	20	ns
t _r	Rise Time	V _{DD} = -15 V, I _D = -8.5 A, V _{GS} = -10 V, R _{GEN} = 6 Ω			9	18	ns
t _{d(off)}	Turn-Off Delay Time				35	56	ns
t _f	Fall Time	-			19	34	ns
Qg	Total Gate Charge	$V_{GS}=0V$ to -10V			38	53	nC
Qg	Total Gate Charge	V_{GS} = 0 V to -4.5 V	V _{DD} = -15 V,		20	28	nC
Q _{gs}	Gate to Source Charge	$V_{GS} = 0 \text{ V to } -4.5 \text{ V}$ $V_{DD} = -15 \text{ V},$ $I_D = -8.5 \text{ A}$			4.3		nC
Q _{gd}	Gate to Drain "Miller" Charge				11		nC
Drain-Soເ	Irce Diode Characteristics						
V _{SD}	Source to Drain Diode Forward Voltage	$V_{GS} = 0 V, I_S = -8.5A$ $V_{GS} = 0 V, I_S = -1.9 A$	(Note 2) (Note 2)		0.86 0.74	1.5 1.2	V
t _{rr}	Reverse Recovery Time				26	40	ns
Q _{rr}	Reverse Recovery Charge	I _F = -8.5 A, di/dt = 100 A/μs			12	20	nC
NOTES: I. R _{θJA} is determ the user's boai	ined with the device mounted on a 1 in ² pad 2 oz copper rd design.	pad on a 1.5 x 1.5 in. board of	FR-4 material. $R_{\theta JC}$ is	guaranteed	by design wh	iile R _{θCA} is de	etermined b

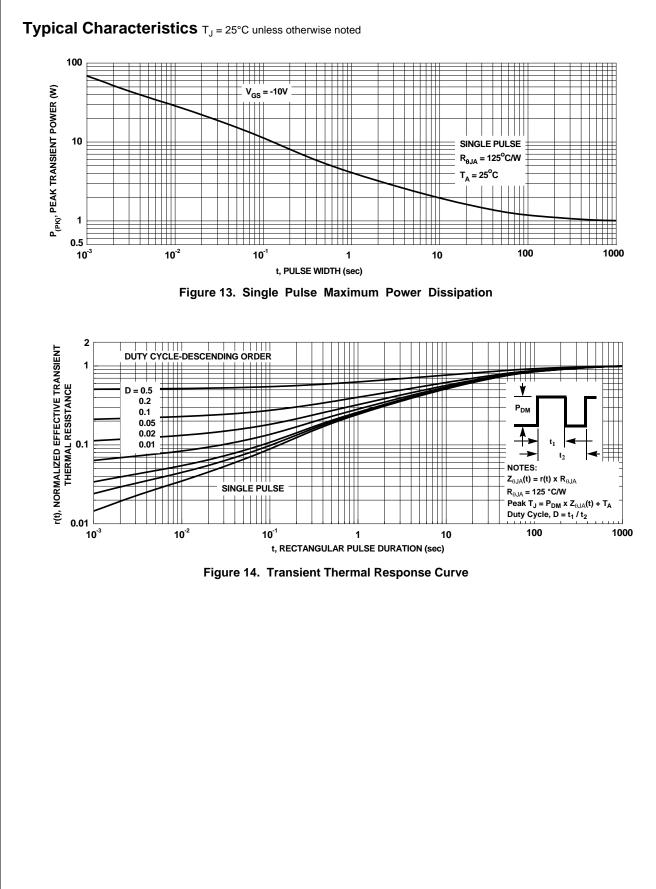
4. The diode connected between the gate and source servers only as protection against ESD. No gate overvoltage rating is implied. ©2010 Fairchild Semiconductor Corporation FDMC4435BZ Rev.2.5

പ്ര

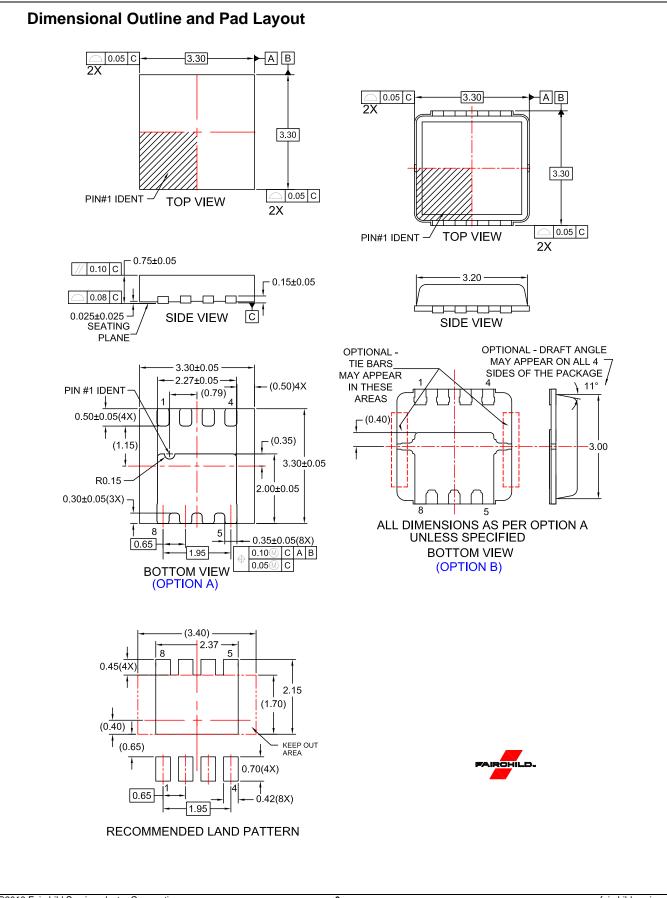

00000

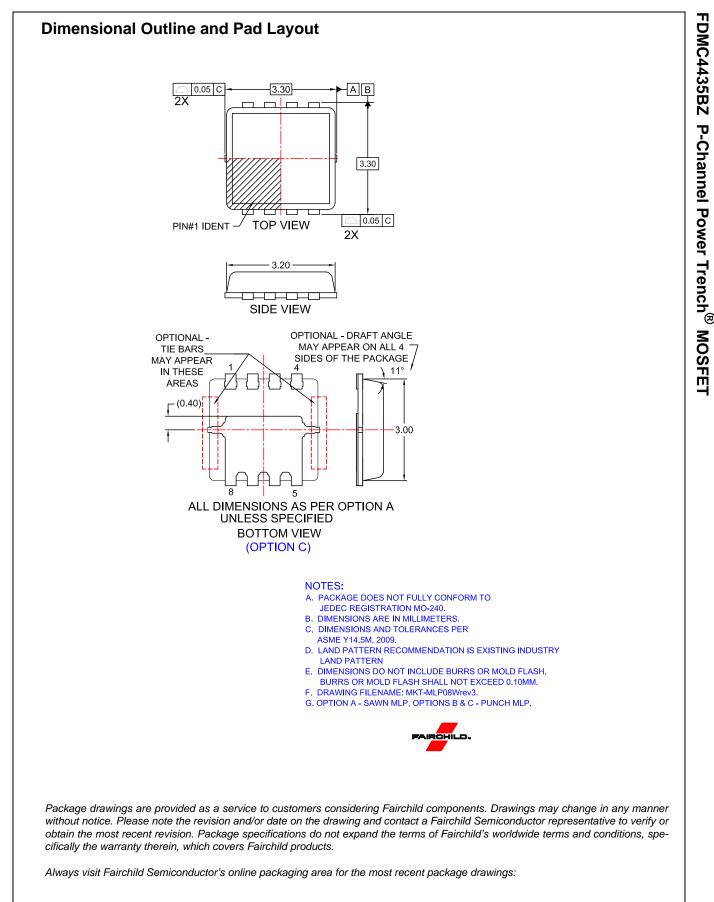

3. Starting T_J = 25°C; P-ch: L = 1mH, I_{AS} = -8A, V_{DD} = -27V, V_{GS} = -10V.

2. Pulse Test: Pulse Width < 300 $\mu s,$ Duty cycle < 2.0 %.


00000

b.125 °C/W when mounted on a minimum pad of 2 oz copper




FDMC4435BZ P-Channel Power Trench[®] MOSFET

FDMC4435BZ P-Channel Power Trench[®] MOSFET

FDMC4435BZ P-Channel Power Trench[®] MOSFET

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

AccuPower TM AttitudeEngine TM Awinda [®] AX-CAP [®] * BitSiC TM Build it Now TM CorePLUS TM CorePOWER TM CROSVOLT TM CTL TM CUrrent Transfer Logic TM DEUXPEED [®] Dual Cool TM EcoSPARK [®] EfficentMax TM ESBC TM Fairchild [®] Fairchild [®] Fairchild [®] Fairchild Semiconductor [®] FACT Quiet Series TM FACT [®] FastyCore TM FETBench TM FPS TM	F-PFS [™] FRFET [®] Global Power Resource SM Green FPS [™] Green FPS [™] e-Series [™] Gmax [™] GTO [™] IntelliMAX [™] ISOPLANAR [™] Marking Small Speakers Sound Louder and Better [™] MicroPLANAR [™] MicroPAt [™] MicroPak [™] MicroPak [™] MicroPak [™] MicroPak [™] MotionMax [™] MotionMax [™] MotionGrid [®] MTi [®] MTx [®] MVN [®] mWSave [®] OptoHiT [™] OPTOLOGIC [®]	OPTOPLANAR [®] O Power Supply WebDesigner TM PowerTrench [®] PowerXS TM Programmable Active Droop TM QFET [®] QST ^M Quiet Series TM RapidConfigure TM O	SYSTEM ®* GENERAL TinyBoost [®] TinyBuck [®] TinyCalcTM TinyCoge [®] TINYOPTOTM TinyPOWer TM TinyPWM ^T
---	--	--	---

*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. TO OBTAIN THE LATEST, MOST UP-TO-DATE DATASHEET AND PRODUCT INFORMATION, VISIT OUR WEBSITE AT <u>HTTP://WWW.FAIRCHILDSEMI.COM</u>. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

AUTHORIZED USE

Unless otherwise specified in this data sheet, this product is a standard commercial product and is not intended for use in applications that require extraordinary levels of quality and reliability. This product may not be used in the following applications, unless specifically approved in writing by a Fairchild officer: (1) automotive or other transportation, (2) military/aerospace, (3) any safety critical application – including life critical medical equipment – where the failure of the Fairchild product reasonably would be expected to result in personal injury, death or property damage. Customer's use of this product is subject to agreement of this Authorized Use policy. In the event of an unauthorized use of Fairchild's product, Fairchild accepts no liability in the event of product failure. In other respects, this product shall be subject to Fairchild's Worldwide Terms and Conditions of Sale, unless a separate agreement has been signed by both Parties.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website,

www.fairchildsemi.com, under Terms of Use

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition		
Advance Information Formative / In Design		Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.		
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.		
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.		
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.		

Rev. 177