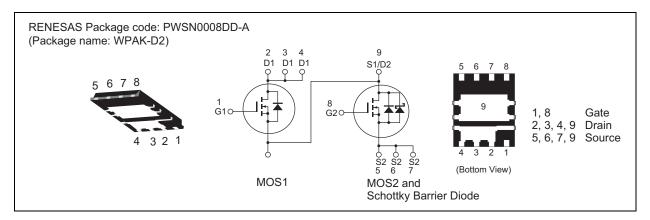


RJK0384DPA


Silicon N Channel Power MOS FET with Schottky Barrier Diode High Speed Power Switching

REJ03G1724-0300 Rev.3.00 Dec 03, 2008

Features

- Low on-resistance
- Capable of 4.5 V gate drive
- High density mounting
- Pb-free
- Halogen-free

Outline

Absolute Maximum Ratings

 $(Ta = 25^{\circ}C)$

		Rat		
Item	Symbol	MOS1	MOS2	Unit
Drain to source voltage	V _{DSS}	30	30	V
Gate to source voltage	V_{GSS}	±20	±20	V
Drain current	I _D	15	42	А
Drain peak current	I _{D(pulse)} Note1	60	168	А
Reverse drain current	I _{DR}	15	42	Α
Avalanche current	I _{AP} Note 2	11	18	Α
Avalanche energy	E _{AR} Note 2	12.1	32.4	mJ
Channel dissipation	Pch Note3	10	25	W
Channel temperature	Tch	150	150	°C
Storage temperature	Tstg	-55 to +150	-55 to +150	°C

Notes: 1. PW \leq 10 μ s, duty cycle \leq 1%

2. Value at Tch = 25°C, Rg \geq 50 Ω

3. Tc=25°C

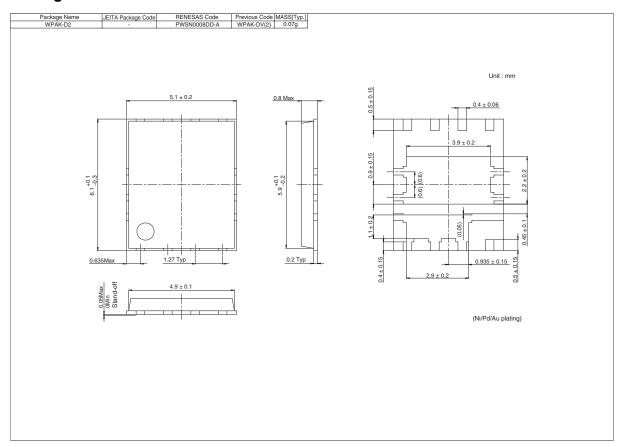
Electrical Characteristics

• MOS1

 $(Ta = 25^{\circ}C)$

Item	Symbol	Min	Тур	Max	Unit	Test Conditions
Drain to source breakdown voltage	$V_{(BR)DSS}$	30	_	_	V	$I_D = 10 \text{ mA}, V_{GS} = 0$
Gate to source leak current	I _{GSS}	_	_	±0.1	μΑ	$V_{GS} = \pm 20 \text{ V}, V_{DS} = 0$
Zero gate voltage drain current	I _{DSS}	_	_	1	μΑ	$V_{DS} = 30 \text{ V}, V_{GS} = 0$
Gate to source cutoff voltage	$V_{GS(off)}$	1.2	_	2.5	V	$V_{DS} = 10 \text{ V}, I_{D} = 1 \text{ mA}$
Static drain to source on state	R _{DS(on)}	_	8.5	11.1	mΩ	$I_D = 7.5 \text{ A}, V_{GS} = 10 \text{ V}^{\text{Note4}}$
resistance	R _{DS(on)}	_	12	16.8	mΩ	$I_D = 7.5 \text{ A}, V_{GS} = 4.5 \text{ V}^{\text{Note4}}$
Forward transfer admittance	y _{fs}	_	31	_	S	$I_D = 7.5 \text{ A}, V_{DS} = 10 \text{ V}^{\text{Note4}}$
Input capacitance	Ciss	_	1010	_	pF	V _{DS} = 10 V
Output capacitance	Coss	_	190	_	pF	$V_{GS} = 0$
Reverse transfer capacitance	Crss	_	75	_	pF	f = 1MHz
Gate Resistance	Rg	_	1.2	_	Ω	
Total gate charge	Qg	_	6.8	_	nC	$V_{DD} = 10 \text{ V}$
Gate to source charge	Qgs	_	2.5	_	nC	V _{GS} = 4.5 V
Gate to drain charge	Qgd	_	1.5	_	nC	I _D = 15 A
Turn-on delay time	t _{d(on)}	_	5	_	ns	$V_{GS} = 10 \text{ V}, I_D = 7.5 \text{ A}$
Rise time	t _r	_	3.6	_	ns	$V_{DD} \cong 10 \text{ V}$
Turn-off delay time	t _{d(off)}		32	_	ns	$R_L = 1.33 \Omega$
Fall time	t _f	_	4.2	_	ns	$R_g = 4.7 \Omega$
Body-drain diode forward voltage	V_{DF}	_	0.84	1.10	V	$I_F = 15 \text{ A}, V_{GS} = 0^{\text{Note4}}$
Body-drain diode reverse recovery time	t _{rr}	_	20	_	ns	$I_F = 15 \text{ A}, V_{GS} = 0$ $di_F / dt = 100 \text{ A}/\mu\text{s}$

Notes: 4. Pulse test


• MOS2

 $(Ta = 25^{\circ}C)$

Item	Symbol	Min	Тур	Max	Unit	Test Conditions
Drain to source breakdown voltage	$V_{(BR)DSS}$	30	_	_	V	$I_D = 10 \text{ mA}, V_{GS} = 0$
Gate to source leak current	I _{GSS}	_	_	±0.1	μΑ	$V_{GS} = \pm 20 \text{ V}, V_{DS} = 0$
Zero gate voltage drain current	I _{DSS}	_	_	1	mA	$V_{DS} = 30 \text{ V}, V_{GS} = 0$
Gate to source cutoff voltage	$V_{GS(off)}$	1.2	_	2.5	V	$V_{DS} = 10 \text{ V}, I_{D} = 1 \text{ mA}$
Static drain to source on state	R _{DS(on)}	_	2.9	3.8	mΩ	$I_D = 21 \text{ A}, V_{GS} = 10 \text{ V}^{\text{Note4}}$
resistance	R _{DS(on)}	_	4.3	6.0	mΩ	$I_D = 21 \text{ A}, V_{GS} = 4.5 \text{ V}^{\text{Note4}}$
Forward transfer admittance	y _{fs}	_	76	_	S	I _D = 21 A, V _{DS} = 10 V Note4
Input capacitance	Ciss	_	2400	_	pF	V _{DS} = 10 V
Output capacitance	Coss	_	500	_	pF	$V_{GS} = 0$
Reverse transfer capacitance	Crss	_	230	_	pF	f = 1MHz
Gate Resistance	Rg	_	2.0	_	Ω	
Total gate charge	Qg	_	17	_	nC	V _{DD} = 10 V
Gate to source charge	Qgs	_	6.5	_	nC	$V_{GS} = 4.5 \text{ V}$
Gate to drain charge	Qgd	_	5.2	_	nC	I _D = 42 A
Turn-on delay time	t _{d(on)}	_	10	_	ns	$V_{GS} = 10 \text{ V}, I_D = 21 \text{ A}$
Rise time	t _r	_	5.5	_	ns	$V_{DD} \cong 10 \text{ V}$
Turn-off delay time	$t_{d(off)}$	_	45	_	ns	$R_L = 0.47 \Omega$
Fall time	t _f	_	7.0	_	ns	$R_g = 4.7 \Omega$
Schottky Barrier diode forward voltage	V _F	_	0.39	_	V	$I_F = 2 A$, $V_{GS} = 0$ Note4
Body-drain diode reverse	t _{rr}		23	_	ns	I _F = 42 A, V _{GS} = 0
recovery time						di _F / dt = 100 A/μs

Notes: 4. Pulse test

Package Dimensions

Ordering Information

Part No.	Quantity	Shipping Container
RJK0384DPA-00-J53	3000 pcs	Taping

Renesas Technology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

- Renesas Technology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

 Notes:

 1. This document is provided for reference purposes only so that Penesas customers may select the appropriate Renesas products for their use. Renesas neither makes in the respect to the accuracy or completeness of the information contained in this document nor grants any license to any intellectual property rights or any other rights of Renesas or any third party with respect to the information in this document.

 2. Renesas shall have no liability for damages or infringement of any intellectual property or other rights arising out of the use of any information in this document, including, but not limited to, product data, diagrams, charts, programs, algorithms, and application circuit examples.

 3. You should not use the products or the technology described in this document for the purpose of military applications such as the development of waspons of mass and included in this document such as product data, diagrams, and regulations, and procedures required by such law and regulations and procedures required by such law and regulations and procedures required by such law and regulations, and procedures required by such law and regulations and procedures required by such law and regulations and procedures required by such law and regulations and procedures required by such law and regulations, and procedures required to such as a few such as a s

RENESAS SALES OFFICES

http://www.renesas.com

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc.

450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K.
Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd.
Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120 Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7858/7898

Renesas Technology Hong Kong Ltd.
7th Floor, North Tower, World Finance Centre, Harbour City, Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2377-3473

Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 3518-3399

Renesas Technology Singapore Pte. Ltd. 1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd. Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510

L		