General Description

The AOZ1331ADI is a dual channel load switch with typical $20 \mathrm{~m} \Omega$ on-resistance in a small package. It contains two n-channel MOSFETs for up to 5.5 V input voltage operation and 6 A current each channel with 2.5 V to 5 V bias supply. Each load switch is independently controlled by a low voltage control signal through ON1/ON2 pin.

The AOZ1331ADI integrates an internal 250Ω load resistor in each channel for quick output discharge when load switch is off. The optional external capacitor connected CT1/CT2 for output slew rate control.

The AOZ1331ADI is available in a $3 \mathrm{~mm} \times 2 \mathrm{~mm}$ DFN-14L package with bottom thermal pad and is rated over a $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ ambient temperature range.

Features

- 0.8 V to 5.5 V input voltage range
- 6A continuous current per channel
- Low $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ internal NFETs
$-20 \mathrm{~m} \Omega$ at $\mathrm{V}_{\mathrm{BIAS}}=5 \mathrm{~V}$
- Low quiescent current
$-80 \mu \mathrm{~A}$ (both channels)
- 60 AA (single channel)
- Adjustable rise time
- 2.5 V to 5 V bias voltage
- Integrated quick output discharge resistor
- Thermally enhanced $3 \mathrm{~mm} \times 2 \mathrm{~mm}$ DFN-14L package

Applications

- Portable computers
- Ultrabooks
- Tablet PC
- Set top boxes
- LCD TVs
- Telecom/Networking/Datacom
- SSD
- Consumer electronics

Typical Application

Ordering Information

Part Number	Temperature Range	Package	Environmental
AOZ1331ADI	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$3 \mathrm{~mm} \times 2 \mathrm{~mm}$ DFN-14L	Green

All AOS products are offered in packages with Pb -free plating and compliant to RoHS standards.
Please visit www.aosmd.com/media/AOSGreenPolicy.pdf for additional information.

Pin Configuration

Pin Description

Pin Number	Pin Name	Pin Function
1,2	IN1	Switch 1 Input. Bypass capacitor is recommended to minimize input voltage dip.
3	ON1	Enable Input of Switch 1. Switch 1 is on when ON1 is pulled high, and is off when ON1 is pulled low. Do not leave floating.
4	VBIAS	Bias Voltage. Power supply to this device. Recommended voltage range is 2.5V to 5.5V.
5	ON2	Enable Input of Switch 2. Switch 2 is on when ON2 is pulled high, and is off when ON2 is pulled low. Do not leave floating.
6,7	IN2	Switch 2 Input. Bypass capacitor is recommended to minimize input voltage dip.
8,9	OUT2	Switch 2 Output.
10	CT2	Slew rate control of switch 2.
11	GND	Ground.
12	CT1	Slew rate control of switch 1.
13,14	OUT1	Switch 1 Output.
EPAD	Exposed Pad	The exposed bottom pad must be connected to GND.

Functional Block Diagram

Absolute Maximum Ratings

Exceeding the Absolute Maximum ratings may damage the device.

Parameter	Rating
IN1, IN2, VBIAS, ON1, ON2 to GND	-0.3 V to 6 V
OUT1, OUT2 to GND	-0.3 V to 6 V
Junction Temperature $\left(\mathrm{T}_{\mathrm{J}}\right)$	$+150^{\circ} \mathrm{C}$
Storage Temperature $\left(\mathrm{T}_{\mathrm{S}}\right)$	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
ESD Rating HBM/CDM	$2 \mathrm{kV} / 1 \mathrm{kV}$

Recommend Operating Ratings

The device is not guaranteed to operate beyond the Maximum Operating Ratings.

Parameter	Rating
Supply Voltage $\left(\mathrm{V}_{\mathrm{IN}}\right)$	5.5 V
Ambient Temperature $\left(\mathrm{T}_{\mathrm{A}}\right)$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Package Thermal Resistance	
3×2 DFN-14 $\left(\Theta_{\mathrm{JC}}\right)$	$10^{\circ} \mathrm{C} / \mathrm{W}$
3×2 DFN-14 $\left(\Theta_{\mathrm{JA}}\right)$	$65^{\circ} \mathrm{C} / \mathrm{W}$

Electrical Characteristics

$T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\text {BIAS }}=5 \mathrm{~V}$, unless otherwise specified Specifications in BOLD indicate a temperature range of $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Units
$\mathrm{V}_{\text {INX }}$	IN Supply Voltage		0.8		5.5	V
$\mathrm{V}_{\text {BIAS }}$	VBIAS Supply Voltage		2.5		5.5	V
$\mathrm{l}_{\mathrm{D} 1,2}$	Maximum Continuous Current	$\mathrm{V}_{\text {INX }}=\mathrm{V}_{\mathrm{ONX}}=5 \mathrm{~V}$		6		A
IPLS1, 2	Maximum Pulsed Switch Current	$\begin{aligned} & V_{\text {INX }}=V_{\text {ONX }}=5 \mathrm{~V} \\ & \text { Pulse }<300 \mu \mathrm{~s}, 2 \% \text { Duty Cycle } \end{aligned}$		8		A
$\mathrm{I}_{\mathrm{q} 2}$	Quiescent Supply Current of $\mathrm{V}_{\text {BIAS }}$ (Two Channels)	$\begin{aligned} & \mathrm{I}_{\mathrm{OUT} 1}=\mathrm{I}_{\mathrm{OUT} 2}=0 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN} 1,2}=\mathrm{V}_{\mathrm{ON} 1,2}=5 \mathrm{~V} \end{aligned}$		80	120	$\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{q} 1}$	Quiescent Supply Current of $\mathrm{V}_{\text {BIAS }}$ (Single Channel)	$\begin{aligned} & \mathrm{I}_{\mathrm{OUT} 1}=\mathrm{I}_{\mathrm{OUT} 2}=0 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN} 1,2}=\mathrm{V}_{\mathrm{ON} 1}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{ON} 2}=0 \mathrm{~V} \end{aligned}$		60		$\mu \mathrm{A}$
IOFF	VBIAS Shutdown Supply Current	$\mathrm{V}_{\mathrm{ON} 1,2}=0 \mathrm{~V}, \mathrm{~V}_{\text {OUT1,2 }}=0 \mathrm{~V}$		1	2	$\mu \mathrm{A}$
$\mathrm{I}_{\text {INOFF }}$	IN1, IN2 Shutdown Supply Current (Single Channel)	$\begin{aligned} & \mathrm{V}_{\mathrm{ONX}}=0 \mathrm{~V}, \mathrm{~V}_{\text {OUTX }}=0 \mathrm{~V}, \\ & \mathrm{~V}_{\text {INX }}=5 \mathrm{~V} \end{aligned}$		2.1	8	$\mu \mathrm{A}$
		$\begin{aligned} & \mathrm{V}_{\mathrm{ONX}}=0 \mathrm{~V}, \mathrm{~V}_{\text {OUTX }}=0 \mathrm{~V}, \\ & \mathrm{~V}_{\text {INX }}=3.3 \mathrm{~V} \end{aligned}$		0.3	3	
		$\begin{aligned} & \mathrm{V}_{\mathrm{ONX}}=0 \mathrm{~V}, \mathrm{~V}_{\text {OUTX }}=0 \mathrm{~V}, \\ & \mathrm{~V}_{\text {INX }}=1.8 \mathrm{~V} \end{aligned}$		0.07	2	
		$\begin{aligned} & \mathrm{V}_{\mathrm{ONX}}=0 \mathrm{~V}, \mathrm{~V}_{\text {OUTX }}=0 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{INX}}=0.8 \mathrm{~V} \end{aligned}$		0.04	1	
ION1, 2	ON1, 2 Leakage Current	$\mathrm{V}_{\mathrm{ON} 1,2}=5 \mathrm{~V}$			1	$\mu \mathrm{A}$
$\mathrm{V}_{\text {ONH1, } 2}$	ON1, 2 High Level Voltage	$\mathrm{V}_{\text {INX }}=0.8 \mathrm{~V}$ to 5 V	1.2			V
$\mathrm{V}_{\text {ONL } 1,2}$	ON1, 2 Low Level Voltage	$\mathrm{V}_{\text {INX }}=0.8 \mathrm{~V}$ to 5 V			0.5	V
Switching ON Resistance						
R_{ON}	Switch ON-State Resistance	$\begin{aligned} & \mathrm{I}_{\text {OUTX }}=-200 \mathrm{~mA} \\ & \mathrm{~V}_{\text {INX }}=0.8 \mathrm{~V} \text { to } 5 \mathrm{~V} \end{aligned}$		20	25	$\mathrm{m} \Omega$
R_{PD}	Output Pull-Down Resistance	$\begin{aligned} & \mathrm{I}_{\text {OUTX }}=15 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{INX}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{ONX}}=0 \mathrm{~V} \end{aligned}$		250	300	Ω

Switching Characteristics

Test conditions: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{INX}}=1 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{TX}}=1 \mathrm{nF}, \mathrm{C}_{\mathrm{LX}}=0.1 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{LX}}=10 \Omega$ (unless otherwise specified).

Symbol	Parameter	Min.	Typ.	Max.	Units
VINX $=5 \mathrm{~V}, \mathrm{VBIAS}=\mathrm{VONX}=5 \mathrm{~V}$					
t_{ON}	Turn-ON Time		1467		$\mu \mathrm{s}$
$t_{\text {D-ON }}$	Turn-ON Delay time		350		
t_{R}	Turn-ON Rise Time		1705		
$\mathrm{t}_{\text {OFF }}$	Turn-OFF Time		5.83		
t_{F}	Turn-OFF Fall Time		3.57		
VINX $=0.8 \mathrm{~V}$, VBIAS $=$ VONX $=5 \mathrm{~V}$					
t_{ON}	Turn-ON Time		582		$\mu \mathrm{s}$
$\mathrm{t}_{\mathrm{D}-\mathrm{ON}}$	Turn-ON Delay time		329		
t_{R}	Turn-ON Rise Time		350		
$\mathrm{t}_{\text {OFF }}$	Turn-OFF Time		91.2		
t_{F}	Turn-OFF Fall Time		13.2		
VINX $=2.5 \mathrm{~V}$, VBIAS $=$ VONX $=2.5 \mathrm{~V}$					
t_{ON}	Turn-ON Time		2010		$\mu \mathrm{s}$
$\mathrm{t}_{\mathrm{D}-\mathrm{ON}}$	Turn-ON Delay time		446		
t_{R}	Turn-ON Rise Time		1985		
$\mathrm{t}_{\text {OFF }}$	Turn-OFF Time		7.46		
t_{F}	Turn-OFF Fall Time		5.7		
VINX $=0.8 \mathrm{~V}$, VBIAS $=$ VONX $=2.5 \mathrm{~V}$					
t_{ON}	Turn-ON Time		1220		$\mu \mathrm{s}$
$\mathrm{t}_{\mathrm{D}-\mathrm{ON}}$	Turn-ON Delay time		664		
t_{R}	Turn-ON Rise Time		760		
$\mathrm{t}_{\text {OFF }}$	Turn-OFF Time		84.6		
t_{F}	Turn-OFF Fall Time		13.2		

Typical Characteristics

Quiescent Current vs. VBIAS (Single Channel)

Quiescent Current vs. $\mathrm{V}_{\text {BIAS }}$ (Both Channels)

Typical Characteristics (Continue)

Typical Characteristics (Continued)

toff vs. VIN
($\mathrm{V}_{\text {BIAS }}=5.5 \mathrm{~V}$)

t_{F} Vs. VIN
($\mathrm{V}_{\mathrm{BIAS}}=2.5 \mathrm{~V}$)
t_{F} Vs. VIN

Functional Characteristic

Turn-ON \& Turn-ON Rise Times

Turn-ON \& Turn-ON Rise Times

Turn-OFF \& Turn-OFF Fall Times
$\left(\mathrm{V}_{\mathrm{INX}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{BIAS}}=5 \mathrm{~V}, \mathrm{C}_{\mathrm{INX}}=1 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{TX}}=1 \mathrm{nF}, \mathrm{C}_{\mathrm{LX}}=0.1 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{LX}}=10 \Omega\right)$

Turn-ON \& Turn-ON Rise Times
$\left(\mathrm{V}_{\text {INX }}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{BIAS}}=5 \mathrm{~V}, \mathrm{C}_{\mathrm{INX}}=1 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{TX}}=1 \mathrm{nF}, \mathrm{C}_{\mathrm{LX}}=0.1 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{LX}}=10 \Omega\right)$

Turn-ON \& Turn-ON Rise Times

Turn-OFF \& Turn-OFF Fall Times
$\left(\mathrm{V}_{\mathrm{INX}}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{BIAS}}=5 \mathrm{~V}, \mathrm{C}_{\mathrm{INX}}=1 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{TX}}=1 \mathrm{nF}, \mathrm{C}_{\mathrm{LX}}=0.1 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{LX}}=10 \Omega\right.$)

Functional Characteristics (Continued)

Turn-OFF \& Turn-OFF Fall Times
$\left(\mathrm{V}_{\mathrm{INX}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{BIAS}}=2.5 \mathrm{~V}, \mathrm{C}_{\mathrm{INX}}=1 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{TX}}=1 \mathrm{nF}, \mathrm{C}_{\mathrm{LX}}=0.1 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{LX}}=10 \Omega\right)$

Turn-ON \& Turn-OFF @ lout $=6 \mathrm{~A}$
$\left(\mathrm{V}_{\mathrm{IN} 1}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{BIAS}}=5 \mathrm{~V}, \mathrm{C}_{\mathrm{IN} 1}=4.7 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{T} 1}=1 \mathrm{nF}, \mathrm{C}_{\mathrm{L} 1}=4.7 \mu \mathrm{~F}\right)$

Turn-OFF \& Turn-OFF Fall Times
$\left(\mathrm{V}_{\mathrm{INX}}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{BIAS}}=2.5 \mathrm{~V}, \mathrm{C}_{\mathrm{INX}}=1 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{TX}}=1 \mathrm{nF}, \mathrm{C}_{\mathrm{LX}}=0.1 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{LX}}=10 \Omega\right)$

50 $\mu \mathrm{s} / \mathrm{div}$

Turn-ON \& Turn-OFF @ IOUT=6A
$\left(\mathrm{V}_{\mathrm{IN} 1}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{BIAS}}=5 \mathrm{~V}, \mathrm{C}_{\mathrm{IN} 1}=4.7 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{T} 1}=1 \mathrm{nF}, \mathrm{C}_{\mathrm{L} 1}=4.7 \mu \mathrm{~F}\right)$

Detailed Description

ON/OFF Control

The AOZ1331ADI is enabled when the ON pin is on active high with 1.2 V or above voltage. The device is disabled when the ON pin voltage is 0.5 V or lower. The EN input is compatible with both TTL and CMOS logic.

Adjustable Rise Time

The slew rate of each channel can be adjusted individually by external capacitors connected to the corresponding CT and GND pins. Multiply the input voltage and the slew rate to obtain the rise time. The table below shows rise times, which are measured on a typical device at $V_{\mathrm{BIAS}}=5 \mathrm{~V}$.

$\begin{aligned} & \mathrm{C}_{\mathrm{TX}} \\ & (\mathrm{pF}) \end{aligned}$	Rise Time ($\mu \mathrm{S}$) $10 \% \sim 90 \%, \mathrm{C}_{\mathrm{Lx}}=0.1 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{INX}}=1 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{LX}}=10 \Omega$ (Typical values at $25^{\circ} \mathrm{C}, \mathbf{2 5 V}$ X7R 10% Ceramic Cap)						
	$\mathrm{V}_{\mathrm{INX}}=5 \mathrm{~V}$	3.3V	1.8 V	1.5V	1.2V	1.05 V	0.8V
OPEN	72.5	57	43	40	37.5	34.5	31.5
220	432	316	193	165	141.5	128.5	106
470	876	610	363	311	261	235	190
1000	1630	1110	668	574	478	428	338
2200	3860	2580	1510	1295	1075	955	745
4700	8000	5540	3270	2780	2290	2050	1625
10000	18600	12600	7360	6300	5200	4560	3620

Applications Information

The basic AOZ1331ADI application circuit is shown in the first page. Component selection is explained below.

Input Capacitor Selection

A capacitor of $1 \mu \mathrm{~F}$ or higher value is recommended to be place close to the IN pins of AOZ1331ADI. This capacitor can reduce the voltage drop caused by the in-rush current during the turn-on transient of the load switch. A higher value capacitor can be used to further reduce the voltage drop during high-current application.

Output Capacitor Selection

A capacitor of $0.1 \mu \mathrm{~F}$ or higher value is recommended to be place between the OUT pins and GND. The switching times are affected by the capacitance. A larger capacitor makes the initial turn-on transient smoother. This capacitor must be large enough to supply a fast transient load in order to prevent the output from dropping.

Thermal Considerations

To ensure proper operation, the maximum junction temperature of the AOZ1331ADI should not exceed $150^{\circ} \mathrm{C}$. Several factors attribute to the junction temperate rise: load current, MOSFET on-resistance, junction-to-ambient thermal resistance, and ambient temperature. The maximum load current can be determined by:
$I_{L O A D(M A X)}=\sqrt{\frac{T_{J(M A X)}-T_{C}}{\Theta_{J C} \times R_{D S O N}}}$

It is noted that the maximum continuous load current is 6 A .

Layout Guidelines

Good PCB is important for improving the thermal performance of AOZ1331ADI. Place the input and output bypass capacitors close to the IN and OUT pins. The input and output PCB traces should be as wide as possible for the given PCB space. Use a ground plane to enhance the power dissipation capability of the device.

Package Dimensions, DFN3x2A_14L, EP1_S

SIDE VIEW

Unit: mm

Notes:

1. Controlling dimensions are in millimeters. Converted inch dimensions are not necessarily exact.
2. Tolerance is ± 0.05, unless otherwise specified.
3. Radius on all corners is 0.152 (max), unless otherwise specified.
4. Package wrapage is 0.012 (max).
5. No plastic flash allowed on the top or bottom lead surface.
6. Pad planarity is ± 0.102.
7. Crack between plastic body and lead is not allowed.

Tape and Reel Dimensions, DFN3x2A_14L, EP1_S

Carrier Tape

Reel

UNIT: MM

Tape Size	Reel Size	M	N	W 1	H	S	K	R
8 mm	$\varnothing 180$	$\varnothing 180.00$	60.00	8.40 		± 0.50	± 0.50	13.00 -0.0
			1.50 .20	13.50	3.00			
			MIN.	MIN.	± 0.50			

Leader/Trailer and Orientation

Unit Per Reel: 3000pcs

Package Marking

AOZ1331ADI
(DFN3x2-14)

LEGAL DISCLAIMER

Alpha and Omega Semiconductor makes no representations or warranties with respect to the accuracy or completeness of the information provided herein and takes no liabilities for the consequences of use of such information or any product described herein. Alpha and Omega Semiconductor reserves the right to make changes to such information at any time without further notice. This document does not constitute the grant of any intellectual property rights or representation of non-infringement of any third party's intellectual property rights.

LIFE SUPPORT POLICY

ALPHA AND OMEGA SEMICONDUCTOR PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
