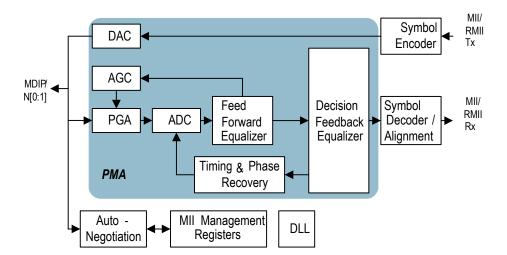


AR8032 Integrated 10/100 Fast Ethernet Transceiver

General Description

The Atheros AR8032 Fast Ethernet transceiver is a highly integrated physical layer device that transmits and receives high-speed data over standard category 5 (CAT 5) unshielded twisted pair cable.


The AR8032 is compliant with 100 BASE-TX and 10 BASE-T IEEE 802.3 standards. The AR8032 device uses advanced mixed-signal processing technology and integrates functions such as adaptive equalization, and timing recovery to deliver substantial power savings and operation in noisy environments.

The AR8032 device supports the Media Independent Interface (MII) and Reduced Media Independent Interface (RMII) for direct connection to a Fast Ethernet-capable MAC.

The AR8032 supports the Atheros Cable Diagnostic Test (CDT) feature, which uses Time Domain Reflectometry (TDR) technology to quickly and remotely identify potential cable malfunctions without deploying field support personnel or bringing down the network. The AR8032 solution detects and reports issues such as PHY malfunctions, bad/marginal cable or patch cord segments or connectors, thus significantly reducing installation time, cable debug efforts, and overall network support cost. Manufactured in a standard CMOS process, the AR8032 is packaged in a 32-pin QFN, featuring a small body size of 5 x 5mm.

Features

- 10/100 BASE-T IEEE 802.3 compliant
- Supports MII/RMII interface
- Low power modes with internal automatic DSP power saving scheme
- Fully integrated digital adaptive equalizers All digital baseline wander correction
- Supports external 25 MHz clock source in MII mode
- Supports external 50 MHz clock source in RMII mode
- Automatic speed downshift mode
- Automatic MDI/MDIX crossover
- Automatic polarity correction
- Loopback modes for diagnostics
- IEEE 802.3u compliant Auto-Negotiation
- Software programmable LED modes
- Cable Diagnostic Test (CDT)
- Requires only one 3.3V power supply
- 32-pin QFN 5mm x 5 mm package

AR8032 Functional Block Diagram

^{© 2010} by Atheros Communications, Inc. All rights reserved. Atheros[®], Atheros Driven[®], Atheros XR[®], Driving the Wireless Future[®], ROCm[®], Super A/G[®], Super A[®], Super N[®], Total 802.11[®], XSPAN[®], Wireless Future. Unleashed Now[®], and Wake on Wireless[®] are registered by Atheros Communications, Inc. Atheros SST[™], Signal-Sustain Technology[™], the Air is Cleaner at 5-GHz[™], and 5-UP[™] are trademarks of Atheros Communications, Inc. The Atheros logo is a registered trademark of Atheros Communications, Inc. All other trademarks are the property of their respective holders. Subject to change without notice.

2 • AR8032 Integrated 10/100 Mbps Ethernet Transceiver July 2010

Table of Contents

Ge	General Description1				
Fe	Features1				
Aŀ	R803	2 Functional Block Diagram1			
1	Pin	Descriptions5			
2	Fur	nctional Description9			
	2.1	Transmit Functions9			
	2.2	Receive Functions9			
		2.2.1 Decoder Modes			
		2.2.2 Analog to Digital Converter . 10			
		2.2.3 Baseline Wander Canceller 10			
		2.2.4 Digital Adaptive Equalizer 10			
		2.2.5 Auto-Negotiation10			
		2.2.6 Smartspeed Function10			
		2.2.7 Polarity Correction			
	2.3	Loopback Modes 11			
		2.3.1 Digital Loopback11			
		2.3.2 External Cable Loopback 11			
		2.3.3 Cable Diagnostic Test11			
		2.3.4 LED Interface11			
		2.3.5 Power Supplies11			
		2.3.6 Low Power Modes11			
_		2.3.7 Hibernation Mode 11			
3		ctrical Characteristics			
		Absolute Maximum Ratings13			
	3.2	Recommended Operating Conditions 13			
	3.3	XTAL/OSC Timing14			
	3.4	MII DC Characteristics15			
	3.5	MDIO Characteristics16			
		3.5.8 MDIO Timing16			
	3.6	Power-On Strapping18			
	3.7	Typical Power Consumption Parame-			
		ters			
	3.8	Power-on Sequence, Reset and Clock 20			
		3.8.1 Power-on Sequence			
		3.8.2 Reset and Clock Timing20			
4	Reg	gister Descriptions21			
	4.1	PHY Register Summary21			
		4.1.1 Control Register			
		4.1.2 Status Register24			
		4.1.3 PHY Identifier			
		4.1.4 PHY Identifier 226			

	4.1.5	Auto-Negotiation Advertise-
		ment Register 27
	4.1.6	Auto-Negotiation Expansion
		Register 29
	4.1.7	Link partner ability register(base
		page)
	4.1.8	Function Control Register 31
	4.1.9	PHY Specific Status Register 33
	4.1.10	Interrupt Enable Register 34
	4.1.11	Interrupt Status Register 36
	4.1.12	Smart Speed Register
		Receive Error Count Register 40
		Virtual Cable Tester Control
		Register 40
	4.1.15	LED Control Register
	4.1.16	Virtual Cable Tester Status Reg-
		ister
	4.1.17	Debug Port (Address Offset Set)
		Register 43
	4.1.18	Debug Port 2 (R/W Port) Regis-
		ter
	4.2 Powe	r Saving and Debug Register
		nary
	4.2.19	10Base-T Test Configuration
		Register
	4.2.20	100Base-TX Test Configuration
		Register 45
		Hibernate Control Register 47
		Power Saving Control
5	Package I	Dimensions
6	Ordering	Information51

4 • AR8032 Integrated 10/100 Mbps Ethernet Transceiver July 2010

1. Pin Descriptions

This section contains a package pinout for the AR8032 QFN 32pin and a listing of the signal descriptions (see Figure 1-1).

The following nomenclature is used for signal names:

NC	No connection to the internal die is made from this pin
_#	At the end of the signal name, indicates active low signals
Р	Power

The following nomenclature is used for signal types described in Table 1-1:

- D Open drain
- IA Analog input
- I Digital input
- IH Digital input with histeresis
- I/O Digital input/output
- OA Analog output
- O Digital output
- PD Internal pull-down for digital input
- PU Internal pull-up for digital input

Figure 1-1 shows the pinout diagram for the AR8032.

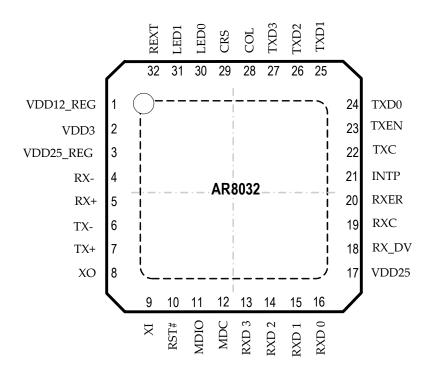


Figure 1-1. Pinout Diagram

NOTE: There is an exposed ground pad on the back side of the package.

Symbol	Pin	Туре	Description		
VDD12_REG	1	AO	1.2V regulator output. A 1 uF plus a 0.1 uF cap needed to stabilize the output		
VDD3	2	Р	3.3V power supply.		
VDD25_REG	3	AO	2.5V regulator output. A 1 uF ceramic cap needed to stabalize the output. It is for analog, digital I/O and the transformer center taps.		
RX-	4	AI, AO	Media Dependent Interface 0, terminate with a 49.9 Ω resister and onnect to XFMR		
RX+	5	AI, AO	Media Dependent Interface 0, terminate with a 49.9Ω resister and connect to XFMR		
TX-	6	AI, AO	Media Dependent Interface 1, terminate with a 49.9Ω resister and connect to XFMR		
TX+	7	AI, AO	Media Dependent Interface 1, terminate with a 49.9Ω resister and connect to XFMR		
ХО	8	AO	Crystal oscillator output. 27 pF to GND.		
XI	9	AI	Crystal oscillator input. 27 pF to GND. An external 25/50 MHx clock source with 1.2V swing can inject from this pin when a crystal is not used and the two 27pF caps removed. The 25 Mhz clock input is for MII mode, while the 50 Mhz clock input is for RMII mode.		
RST#	10	IH, PU	System reset input.		
MDIO	11	I/O, D, PU	Management data.		
MDC	12	I, PU	/anagement clock reference.		
RXD3	13	I/O, PU, POS	MII Receive data output [3].		
RXD2	14	I/O, PD, POS	MII Receive data output [2].		
RXD1	15	I/O, PD, POS	MII/RMII Receive data output [1].		
RXD0	16	I/O, PU, POS	MII/RMII Receive data output [0].		
VDD25	17	Р	2.5V I/O power, connect with pin 3, 0.1uF to GND.		
RX_DV	18	I/O, PD, POS	Receive data valid output		
RXC	19	I/O, PD, POS	Receive clock output		
RXER	20	I/O, PD, POS	Receive error output		
INTP	21	I/O, PU, POS	Interrupt Output		
TXC	22	I/O, PU, POS	Transmit clock output		
TXEN	23	I, PU	Transmit data enable		

Table 1-1. Signal to Pin Relationships and Descriptions

Symbol	Pin	Туре	Description
TXD0	24	I, PD	MII/RMII Transmit data input [0]
TXD1	25	I, PD	MII/RMII Transmit data input [1]
TXD2	26	I, PD	MII Transmit data input [2]
TXD3	27	I, PD	MII Transmit data input [3]
COL	28	I/O, PD, POS	Collision Detect output
CRS	29	I/O, PD POS	Carrier Sense output
LED0	30	I/O, PU POS	Programable LED0, the default indicates Link and Activity
LED1	31	I/O, PU POS	Programmable LED1, The default indicates Speed
REXT	32	AO	Connect 2.37 K to GND
PADDLE	GND	Gnd	Ground

Table 1-1. Signal to Pin Relationships and Descriptions (continued)

NOTE: All of the digital input only pads are 3.3V input tolerant. The 0 and I/0 pads are powered with 2.5V power. The input level of any I/0 pads (except open-drain type) is limited to 3 V.

2. Functional Description

The Atheros AR8032 is a highly integrated analog front end (AFE) and digital signal transceiver (see Figure 2-1), providing high performance with substantial cost reduction. AFE consists of automatic gain control (AGC), ADC, DAC, drivers, and clock generation. The AR8032 provides physical layer functions to transmit and receive high-speed data over standard category 5 (CAT5) unshielded twisted pair cable.

See also the "AR8032 Functional Block Diagram" on page 1.

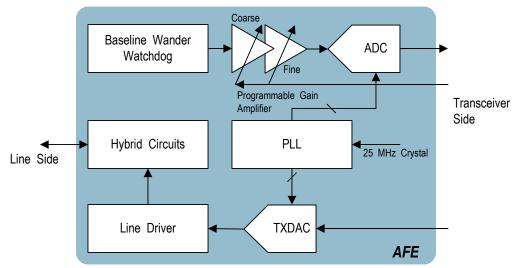


Figure 2-1. Analog Front End

The AR8032 10/100 PHY is fully 802.3, 802.3u compliant, and supports the mediaindependent interface (MII) and Reduced Media Independent Interface (RMII) to connect to a Fast Ethernet-capable MAC.

The AR8032 transceiver combines feedforward equalizer, feedback equalizer, and timing recovery, to enhance signal performance in noisy environments.

2.1 Transmit Functions

The AR8032 transmit channel includes 4B/5B mapper and scrambler. Table 2-1 describes the transmit function encoder modes.

Table 2-1. Transmit Function Encoder Modes	Table 2-1.	Transmit	Function	Encoder	Modes
--	------------	----------	----------	---------	-------

Encoder Mode	Description
100BASE-TX	In 100BASE-TX mode, 4-bit data from the MII is 4B/5B serialized, scrambled, and encoded to a three-level MLT3 sequence transmitted by the PMA.
10BASE-T	In 10BASE-T mode, the AR8032 transmits and receives Manchester-encoded data.

2.2 Receive Functions

The AR8032 receive channel includes digital gain control, feed forward adaptive equalizer, decision feedback equalizer, slicer, 5B/4B demapper and de-scrambler, PCS receive functional block, and timing recovery logic.

2.2.1 Decoder Modes

Table 2-2 describes the receive function decoder modes.

Table 2-2. Receive Function Decoder Modes

Decoder Mode	Description
100BASE-TX	In 100BASE-TX mode, the receive data stream is recovered and descrambled to align to the symbol boundaries. The aligned data is then parallelized and 5B/ 4B decoded to 4-bit data. This output runs to the MII/RMII receive data pins after data stream delimiters have been translated.
10BASE-T	In 10BASE-T mode, the recovered 10BASE-T signal is decoded from Manchester then aligned.

2.2.2 Analog to Digital Converter

The AR8032 device employs an advanced high speed ADC on each receive channel with high resolution, which results in better SNR and lower error rates.

2.2.3 Baseline Wander Canceller

Baseline wander results from Ethernet links that AC-couple to the transceivers and from AC coupling that cannot maintain voltage levels for longer than a short time. As a result, transmitted pulses are distorted, resulting in erroneous sampled values for affected pulses. The AR8032 device uses an advanced baseline wander cancellation circuit that continuously monitors and compensates for this effect, minimizing the impact of DC baseline shift on the overall error rate.

2.2.4 Digital Adaptive Equalizer

The digital adaptive equalizer removes intersymbol interference at the receiver. The digital adaptive equalizer takes unequalized signals from ADC output and uses a combination of feedforward equalizer (FFE) and decision feedback equalizer (DFE) for the bestoptimized signal-to-noise (SNR) ratio.

2.2.5 Auto-Negotiation

The AR8032 device supports 10/100 BASE-T Copper auto-negotiation in accordance with IEEE 802.3 clauses 28 and 40. Auto-negotiation provides a mechanism for transferring information between a pair of link partners to choose the best possible mode of operation in terms of speed, duplex modes, and master/ slave preference. Auto-negotiation is initiated upon any of the following scenarios:

- Power-up reset
- Hardware reset
- Software reset
- Auto-negotiation restart
- Transition from power-down to power-up
- The link goes down

If auto-negotiation is disabled, a 10BASE-T or 100BASE-TX can be manually selected using the IEEE MII registers.

2.2.6 Smartspeed Function

The Atheros Smartspeed function is an enhanced feature of auto-negotiation that allows the AR8032 device to fall back in speed based on cabling conditions as well as operate over CAT3 cabling (in 10BASE-T mode) or twopair CAT5 cabling (in 100BASE-TX mode).

By default, the Smartspeed feature is enabled. Refer to the register "Smart Speed Register" on page 38, which describes how to set the parameters. Set these register bits to control the Smartspeed feature:

- Bit [5]: 1 = Enables Smartspeed (default)
- Bits [4:2]: Sets the number of link attempts before adjusting
- Bit [1]: Timer to determine the stable link condition

2.2.7 Polarity Correction

If cabling has been incorrectly wired, the AR8032 automatically corrects polarity errors on the receive pairs.

2.3 Loopback Modes

2.3.1 Digital Loopback

Digital loopback provides the ability to loop transmitted data back to the receiver using digital circuitry in the AR8032 device.

Figure 2-2 shows a block diagram of digital loopback.

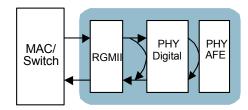


Figure 2-2. Digital Loopback

2.3.2 External Cable Loopback

External cable loopback loops MII Tx to MII Rx through a complete digital and analog path and an external cable, thus testing all the digital data paths and all the analog circuits. Figure 2-3 shows a block diagram of external cable loopback.

Figure 2-3. External Cable Loopback

2.3.3 Cable Diagnostic Test

The Cable Diagnostic Test (CDT) feature in the AR8032 device uses Time Domain Reflectometry (TDR) to identify remote and local PHY malfunctions, bad/marginal cable or patch cord segments, or connectors. Some of the possible problems that can be diagnosed include opens, shorts, cable impedance mismatch, bad connectors, termination mismatch, and bad magnetics. The CDT can be performed when there is no link partner or when the link partner is auto-negotiating.

2.3.4 LED Interface

The LED interface can either be controlled by the PHY or controlled manually, independent of the state of the PHY. Two status LEDs are available. These can be used to indicate operation speed, and link status. The LEDs can be programmed to different status functions from their default value. They can also be controlled directly from the MII register interface.

2.3.5 Power Supplies

The AR8032 device requires only one power supply: 3.3V.

2.3.6 Low Power Modes

The AR8032 device supports the software power-down low power mode. The standard IEEE power-down mode is entered by setting the POWER_DOWN bit (bit [11]) of the register "Control Register" on page 22 equal to one.

In this mode, the AR8032 device ignores all MAC interface signals except the MDC/MDIO. It does not respond to any activity on the CAT 5 cable. The device cannot wake up on its own. It can only wake up by setting the POWER_DOWN bit (bit [11]) of the register "Control Register" on page 22" to 0.

2.3.7 Hibernation Mode

The AR8032 device supports hibernation mode. When the cable is unplugged, the AR8032 will enter hibernation mode after about 10 seconds. The power consumption in this mode is very low compared to the normal mode of operation. When the cable is reconnected, the AR8032 wakes up and normal functioning is restored.

3. Electrical Characteristics

3.1 Absolute Maximum Ratings

Table 3-1 summarizes the absolute maximum ratings and Table 3-2 lists the recommended operating conditions for the AR8032. Absolute maximum ratings are those values beyond which damage to the device can occur. Functional operation under these conditions, or at any other condition beyond those indicated in the operational sections of this document, is not recommended.

Symbol	Symbol Parameter		Unit
VDD33	3.3V supply voltage	3.8	V
T _{store}	Storage temperature	-65 to 150	°C
HBM	Human Body Model	±4500	V
CDM	Charged-Device Model	±1000	V
MM	Machine Model	±200	V

Table 3-1. Absolute Maximum Ratings

3.2 Recommended Operating Conditions

Table 3-2. Recommended Operating Conditions

Symbol	Parameter	Min	Тур	Max	Unit
VDD33	3.3V supply voltage	3.0	3.3	3.6	V
T _A	Ambient Temperature for normal operation — Commercial chip version, AR8032-BL1A (see "Ordering Information — page 53")	0	_	70	°C
	Ambient Temperature for normal operation — Industrial chip version, AR8032-BL1B (see "Ordering Information — page 53")	-40	_	85	°C
T _J	Junction Temperature	-40	—	125	°C
Ψ_{JT}	Thermal Dissipation Coefficient		4	—	°C/W

NOTE: The following condition must be satisfied:

 $T_{Jmax} > T_{Cmax} + \Psi_{JT} \times P_{Typical}$

Where:

 T_{Jmax} = Maximum allowable temperature of the Junction

T_{Cmax} = Maximum allowable Case temperature

 Ψ_{IT} = Thermal Dissipation Coefficient

P_{Typical} = Typical power dissipation

3.3 XTAL/OSC Timing

Figure 3-1 shows the XTAL timing diagram.

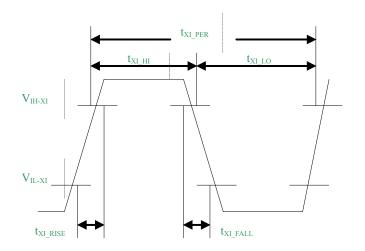


Figure 3-1. XTAL/OSC Timing Diagram

Symbol	Parameter	Min	Тур	Max	Unit
T_XI_PER	XI/OSCI Clock Period	40.0 - 50ppm	40.0	40.0 + 50ppm	ns
T_XI_HI	XI/OSCI Clock High	14	20.0		ns
T_XI_LO	XI/OSCI Clock Low	14	20.0		ns
T_XI_RISE	XI/OSCI Clock Rise Time, V _{IL} (max) to V _{IH} (min)			4	ns
T_XI_FALL	XI/OSCI Clock Fall time, V _{IL} (max) to V _{IH} (min)			4	ns
V_IH_XI	The XTLI input high level	0.8	1.2	1.5	V
V_IL_XI	The xtli input low lever voltage	-0.3	0	0.15	V

Table 3-4. XTAL/OSC Timing — RMII mode

Symbol	Parameter	Min	Тур	Max	Unit
T_XI_PER	XI/OSCI Clock Period	20.0 - 50ppm	20.0	20.0 + 50ppm	ns
T_XI_HI	XI/OSCI Clock High	8	10.0		ns
T_XI_LO	XI/OSCI Clock Low		10.0		ns

T_XI_RISE	XI/OSCI Clock Rise Time, V _{IL} (max) to V _{IH} (min)			2	ns
T_XI_FALL	XI/OSCI Clock Fall time, V _{IL} (max) to V _{IH} (min)			2	ns
V_IH_XI	The XTLI input high level	0.8	1.2	1.5	V
V_IL_XI	The xtli input low level voltage	-0.3	0	0.15	V

3.4 MII DC Characteristics

Table 3-5 shows the MII DC characteristics.

Table 3-5. MII DC Characteristics

Symbol	Parameter	Min	Max	Unit
V _{OH}	Output high voltage	2.4	3.0	V
V _{OL}	Output low voltage	GND	0.4	V
V _{IH}	Input high voltage	1.7		V
V _{IL}	Input low voltage	_	0.7	V
I_{IH}	Input high current	_	15	μΑ
I_{IL}	Input low current	-15	—	μΑ

Figure 3-2 shows the MII input AC timing diagram.

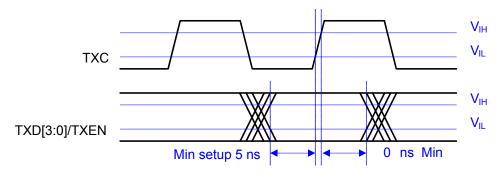


Figure 3-2. MII Input AC Timing Diagram

Figure 3-3 shows the MII output AC timing diagram.

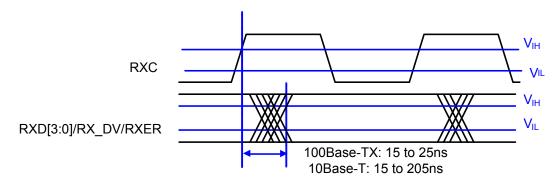


Figure 3-3. MII Output AC Timing Diagram

3.5 MDIO Characteristics

Table 3-6 shows the MDIO DC characteristics.RMII TimingTable 3-6.MDIO DC Characteristics

Symbol	Parameter	Min	Max	Unit
V _{OH}	V _{OH} Output high voltage			V
V _{OL}	Output low voltage	_	0.4	V
V _{IH}	Input high voltage	2		V
V _{IL}	Input low voltage		0.8	V
I _{IH}	Input high current	_	0.4	mA
I _{IL}	Input low current	-0.4		mA

3.5.8 MDIO Timing

Figure 3-4 shows the MDIO timing diagram.

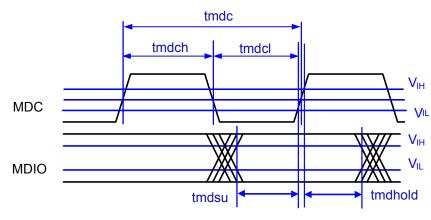


Figure 3-4. MDIO Timing Diagram

Table 3-7 shows the RMII AC timing characteristics.

Symbol	Parameter	Min	Тур	Max	Unit
tmdc	MDC Period	100			nS
tmdcl	MDC Low Period	40			nS
tmdch	MDC High Period	40			nS
tmdsu	MDIO to MDC rising setup time	10			nS
tmdhold	MDIO to MDC rising hold time	10			nS

Table 3-7. MDIO Timing

Table 3-8 shows the RMII AC timingcharacteristics.

Table 3-8. RMII AC Timing

Symbol	Parameter	Min	Max	Unit
Tck	XI Period	20 -50ppm	20 +50ppm	nS
Tsu	TXEN, TXD to XI rising setup time	4	—	nS
Thold	TXEN, TXD to XI rising hold time	2	—	nS
Tdly	XI to RX_DV, RXD output delay	3	14	nS

Figure 3-5 shows the AC RMII timing diagram.

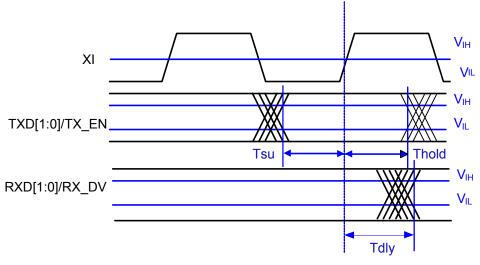


Figure 3-5. RMII AC Timing Diagram

3.6 Power-On Strapping

Table 3-9 shows the pin-to-PHY core configuration signal power-on strapping.

PHY Pin Name	Pin	PHY Core Configuration Signal	Description	Default
RXD3	13	PHYADDRESS[0]	RXD[1:3] set the lower three bits of the physical	
RXD2	14	PHYADDRESS[1]	address. The upper two bits of the physical addr default to 001	ess 0
RXD1	15	PHYADDRESS[2]		0
RXD0	16	DUPLEX	0 Half Duplex	1
			1 Full Duplex	
RXDV	18	CONFIG2	CONFIG[2:0]	000
CRS	29	CONFIG1	000 = MII	
COL	28	CONFIG0	001 = RMII All other binary combinations are Reserved.	
RXER	20	ISOLATE	0 Disable	0
			1 Enable	
INTP	21	TEST MODE	0 Test Mode	1
			1 Normal Operation	
LED0	30	AUTO-	0 Disable	1
		NEGOTIATION	1 Enable	
LED1	31	SPEED	0 10Base-T	1
			1 100Base-Tx	
RXC	19	POWER DOWN	0 Disable	0
		MODE	1 Enable	
TXC	22	Reserved		1

Table 3-9. Power-On Strapping^[1]

[1]Default values: 0 = Pull-down, 1 = Pull-up with 10 K resistor.

3.7 Typical Power Consumption Parameters

The following conditions apply to the typical characteristics unless otherwise specified:

 V_{DD33} = 3.3V, T_{amb} = 25 °C

Table 3-10 shows the typical power drain as a function of the AR8032's operating mode.

Table 3-10. Total System Powe

Symbol	AR8032 Power Consumption (mW)	Total System (includes XFMR and LEDO Power Consumption (mW)	Description
P _{LDPS}	10.9	10.9	Link down, power-saving mode
P _{PWD}	6.6	6.6	Power Down Mode

Table 3-10. Total System Power

Symbol	AR8032 Power Consumption (mW)	Total System (includes XFMR and LEDO Power Consumption (mW)	Description
P _{Isolate}	39.6	52.8	Isolate mode
P _{100F}	123	280	100Base-T Full Duplex
P _{10F}	52.5	272	10Base-T Full Duplex
P _{10TX}	49.5	257.4	10Base-T Transmit
P _{10RX}	49.5	59.4	10Base-T Receive
P _{10IDLE}	47.8	69.3	10Base-T Idle

NOTE: Total power includes power consumed by the center-tap of the transformer and the LEDs

Table 3-11 shows the Power Output Parameters of the AR8032's operating mode.

Table 3-11.	Power	Output	Parameters
10010 0 11.		Juspas	

Symbol	Voltage Range	Total Consumption
VDD12_REG	1.2V ±5%	34 mA
VDD25_REG	2.5V +10%/-5%	70 mA

NOTE: The 1.2V only has one regulator outpur pin, so the 1.2V current does not appear on the board. The VDD25_REG total comsumption includes center tap power consumption.

3.8 Power-on Sequence, Reset and Clock

3.8.1 Power-on Sequence

The AR8032 only needs a single 3.3V power supply input. The 1.2V core and 2.5V I/O voltages are generated by AR8032's internal LDOs. So the AR8032's power-on sequence to establish the power rails stability is met internally.

3.8.2 Reset and Clock Timing

Figure 3-6 shows the Power-on Timing diagram.

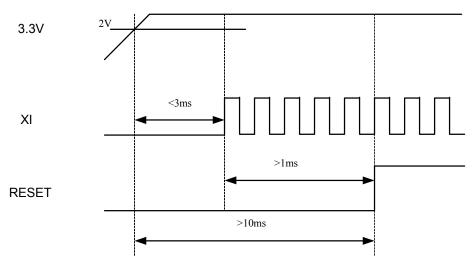


Figure 3-6. Power-on Timing Diagram

AR8032 provides a hardware RESET pin, which must be asserted during power on and kept low for at least 10 ms after 3.3V rail reaches 2V.

AR8032 clock input XI must be supplied within 3ms after 3.3V rail reaching 2V and must be kept stable for at least 1ms before RESET is brought to high.

If designs with an external 25MHz clock (for MII mode) or 50MHz (for RMII mode) can not

meet the 3.3v to XI within the 3ms requirement, the PHY registers need be initialized (different from default value) immediately, as in the following — write debug register 0x12[3]=1'b0 then write debug register 0x29[2:0]=3'b100.

Once the power 3.3V rail is stable and clock XI is present then subsequent hardware reset signal must be a minimum of 1ms in duration.

Figure 3-7 shows the Warm Hardware Reset Diagram.

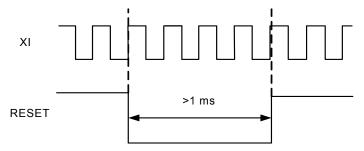


Figure 3-7. Warm Hardware Reset Diagram

4. Register Descriptions

Table 4-1 shows the reset types used in this document.

Table 4-1. Reset Types

Туре	Description
LH	Register field with latching high function. If status is high, then the register is set to one and remains set until a read operation is performed through the management interface or a reset occurs.
LL	Register field with latching low function. If status is low, then the register is cleared to a zero and remains cleared until a read operation is performed through the management interface or a reset occurs.
Retain	Value written to a register field takes effect without a software reset.
SC	Self-Clear. Writing a one to this register causes the desired function to execute immediately, and the register field clears to zero when the function is complete.
Update	The value written to the register field does not take effect until a software reset is executed. The value can still be read after it is written.
RES	Reserved for future use. All reserved bits are read as a zero unless otherworse noted.
RO	Read Only
ROC	Read Only Clear. After read, register field is cleard to zero.

Table 4-1.	Reset Types	(continued)
------------	-------------	-------------

Туре	Description
R/W	Read/Write
RWC	Read/Write Clear. After read, register field is cleared to zero.
RWR	Read/Write Reset. All bits are readable and writable. After reset or read, the register field is cleard to zero.
RWS	Read/Write Set. All bits are readable and writable. After reset or read, the register field is set to a non-zero value specified in the text.
SC	Self-Clear. Writing a one to this register causes the desired function to be immediately executed, then the register field is cleared to zero when the function is complete.
WO	Write Only. Reads to this type of register return undefined data.

4.1 PHY Register Summary

Table 4-2 summarizes the registers for theAR8032.

Table 4-2.	Register	Summary
------------	----------	---------

Offset	Register	Page					
0x00	Control Register	page 22					
0x01	Status	page 24					
0x02	PHY Identifier	page 26					
0x03	PHY Identifier 2	page 26					
0x04	Auto-Negotiation Advertisement	page 29					
0x05	Link Partner Ability	page 30					
0x06	Auto-Negotiation Expansion page						
0x07	Reserved						
0x08	Reserved						
0x09	Reserved						
0x0A	Reserved						
0x0B	Reserved						

Offset	Register	Page					
0x0C	Reserved						
0x0D	Reserved						
0x0E	Reserved						
0x0F	Reserved						
0x10	Function Control Register	page 22					
0x11	PHY Specific Status Register	page 33					
0x12	Interrupt Enable Register	page 34					
0x13	Interrupt Status Register	page 36					
0x14	Smart Speed Register	page 38					
0x15	Recieve Error Counter Register	page 40					
0x16	Virtual Cable Tester Control Register	page 40					
0x18	LED Control Register	page 41					
0x19	Reserved						
0x1A	Reserved						
0x1B	Reserved						
0x1C	Virtual Cable Tester Status Register	page 40					
0x1D	Debug Port (Address Offset Set)	page 43					
0x1E	Debug Port 2 (R/W Port) Register	page 43					
0x1F	Reserved						
	Debug Register	1					
0x12	10 Base-T Test Configuration Register	page 44					
0x10	100 Base-TX Test Configuration Register	page 45					
0x0B	Hibernate Control Register	page 47					
0x29	Power Saving Control	page 48					

Table 4-2. Register Summary (continued)

4.1.1 Control Register

Bit	Name	Name Type		Description
15	Reset	Mode HW Rst	R/W 0	PHY Software Reset. Writing a "1" to this bit causes the PHY the reset operation is done , this bit is cleared to "0" automatically. The reset occurs immediately.
		SW Rst	SC	1= PHY reset 0 =Normal operation
14	Loopback	Mode HW Rst	$ \begin{array}{c c} R/W \\ \hline \\ 0 \\ \hline \\ 0 \\ \hline \\ 0 \\ \hline 0 \\ 0 \\$	When loopback is activated, the transmitter data presented on TXD is looped back to RXD internally. Link is broken when loopback is enabled. 1 = Enable Loopback
		SW Rst	0	0 = Disable Loopback

Bit	Name	Ту	ре	Description
13	Speed Selection (LSB)	Mode HW Rst SW Rst	R/W See Desc. Retain	Upon hardware reset , this bit and 0.6 bit depend upon anen(bit0.12) and SPEED: anen {0.6 , 0.13} 0 {0, SPEED} 1 2'b01 (00:10Mbps, 01:100Mbps, 10:Reserved, 11:Reserved)
12	Auto-negotiation	Mode HW Rst SW Rst	R/W See Desc. Retain	Upon hardware reset, this bit depends on ANEN_PAD. 1 = Enable Auto-Negotiation Process 0 = Disable Auto-Negotiation Process
11	Power Down	Mode HW Rst SW Rst	R/W 0 0	When the port is switched from power down to normal operation, software reset and restart Auto-Negotiation are performed even when bits Reset (0.15) and Restart Auto-Negotiation (0.9) are not set by the user. 1 = Power down 0 = Normal operation
10	Isolate	Mode HW Rst SW Rst	R/W 0 0	The MII output pins are tristated when this bit is set to 1. The MII inputs are ignored. 1 = Isolate 0 = Normal operation
9	Restart Auto- negotiation	Mode HW Rst SW Rst	R/W, SC 0 SC	Auto-Negotiation automatically restarts after hardware or software reset regardless of whether or not the restart bit (0.9) is set. 1 = Restart Auto-Negotiation Process 0 = Normal operation
8	Duplex mode	Mode HW Rst SW Rst	R/W, SC See Desc.	Upon hardware reset, this bit bit depends on DUPLEX_MODE_PAD and anen bit(0.12): 0.12 0.8 0 0 1 DUPLEX_MODE_PAD 1:Full Duplex 0:Half Duplex
7	Collision Test	Mode HW Rst SW Rst	R/W 0 0	Setting this bit to 1 will cause the COL pin to assert whenever the TX_EN pin is asserted. 1 = Enable COL signal test 0 = Disable COL signal test
6	Speed Selection (MSB)	Mode HW Rst SW Rst	R/W See Desc.	See bit 0.13.

Bit	Name	Туре			Description
5:0	RES	Mode	RO	Reserved for future use.	
		HW Rst	00000		
		SW Rst	00000		

4.1.2 Status Register

Bit	Name	Ту	ре	Description
15	15 100Base-T4		RO	100BASE-T4.
		HW Rst	0	This protocol is not available. 0 = PHY not able to perform 100BASE-T4
		SW Rst	0	
14	100Base-Tx Full-	Mode	RO	Capable of 100Base-Tx Full-Duplex operation
	Duplex	HW Rst	1	
		SW Rst	1	
13	100Base-Tx Half-	Mode	RO	Capable of 100Base-Tx Half-Duplex operation
	Duplex	HW Rst	1	
		SW Rst	1	
12	10 Mbps Full-	Mode	RO	Capable of 10Base-T Full-Duplex operation
	Duplex	HW Rst	1	
		SW Rst	1	
11	10 Mbps Half-	Mode	R/W	Capable of 10 Mbps Half-Duplex operation
	Duplex	HW Rst	1	
		SW Rst	1	
10	100Base-T2 Full-	Mode	RO	Not able to perform 100Base-T2 Full-Duplex operation
	Duplex	HW Rst	0	
		SW Rst	0	

Bit	Name	Ту	ре	Description
9	100Base-T2 Half-	Mode	R/W	Not able to perform 100Base-T2 Half-Duplex operation
	Duplex	HW Rst	0	
		SW Rst	0	
8	Extended Status	Mode	RO	Extended status information in register 15
		HW Rst	1	
		SW Rst	1	
7	RES	Mode	RO	Reserved
		HW Rst	0	
		SW Rst	0	
6	MF Preamble Suppression	Mode	RO	PHY accepts management frames with preamble suppressed
	Suppression	HW Rst	1	
		SW Rst	1	
5	Auto-negotiation	Mode	RO	1: Auto negotiation process complete
	Complete	HW Rst	0	0:Auto negotiation process not complete
		SW Rst	0	
4	Remote Fault	Mode	RO, LH	1: Remote fault condition detected 0:Remote fault condition not detected
		HW Rst	0	
		SW Rst	0	
3	Auto-Negotiation	Mode	R/W	1: PHY able to perform auto-negotiation
	Ability	HW Rst	1	
		SW Rst	1	
2	Link Status	Mode	RO, LL	This register bit indicates whether the link was lost since the last read. For the current link status, read
		HW Rst	0	register bit 17.10 Link Real Time. 1 = Link is up
		SW Rst	0	0 = Link is down

Bit	Name	Ту	pe	Description
1	Jabber Detect	Mode	RO, LH	1: Jabber condition detected 0: Jabber condition not detected
		HW Rst	0	
		SW Rst	0	
0	0 Extended Capability	Mode	RO	1: Extended register capabilitites
		HW Rst	1	
		SW Rst	1	

4.1.3 PHY Identifier

Offset: 0x02

Bit	Name	Ту	pe	Description
15:0	Organizationally Unique Identifer Bits 3:18	Mode HW Rst SW Rst	RO Always 16'h 004d Always 16'h	Organizationally Unique Identifer Bits 3:18
_			004d	

4.1.4 PHY Identifier 2

4.1.5 Auto-Negotiation Advertisement Register

Bit	Name	Ţ	уре	Description
15	Next Page	Mode HW Rst	R/W 0	The value of this bit will be updated immediately after writing this register. But the value written to this bit does not takes effect until any one of the following occurs: o Software reset is asserted (register 0.15)
		SW Rst	Update	 o Restart Auto-Negotiation is asserted (register 0.15) o Restart Auto-Negotiation is asserted (register 0.9) o Power down (register 0.11) transitions from power down to normal operation o Link goes down If 1000BASE-T is advertised then the required next pages are automatically transmitted. Register 4.15 should be set to 0 if no additional next pages are needed. 1 = Advertise 0 = Not advertised
14	Ack	Mode	RO	Must be 0
		HW Rst	Always 0	
		SW Rst	Always 0	
13	Remote Fault	Mode	R/W	1 = Set Remote Fault bit
		HW Rst	See Desc.	0 = Do not set Remote Fault bit
		SW Rst	Update	
12	Reserved	Mode	RO	Always 0.
		HW Rst	Always 0	
		SW Rst	Always 0	
11	Asymmetric Pause	Mode	R/W	Upon hardware reset , this bit depends on ASYM_PAUSE_PAD.
		HW Rst	See Desc.	The value of this bit will be updated immediately after writing this register. But the value written to this bit does not takes effect until any one of the following occurs:
		SW Rst	Update	 o Software reset is asserted (register 0.15) o Restart Auto-Negotiation is asserted (register 0.9) o Power down (register 0.11) transitions from power down to normal operation o Link goes down 1 = Asymmetric Pause 0 = No asymmetric Pause

Bit	Name	Ţ	уре	Description
10	PAUSE	Mode HW Rst SW Rst	R/W See Desc. Update	Upon hardware reset , this bit depends on PAUSE_PAD. The value of this bit will be updated immediately after writing this register. But the value written to this bit does not takes effect until any one of the following occurs: o Software reset is asserted (register 0.15) o Restart Auto-Negotiation is asserted (register 0.9) o Power down (register 0.11) transitions from power down to normal operation o Link goes down 1 = MAC PAUSE implemented 0 = MAC PAUSE not implemented
9	100BASE-T4	Mode HW Rst SW Rst	RO Always 0 Always 0	Not able to perform 100BASE-T4
8	100BASE-TX Full Duplex	Mode HW Rst SW Rst	R/W 1 Update	The value of this bit will be updated immediately after writing this register. But the value written to this bit does not takes effect until any one of the following occurs: o Software reset is asserted (register 0.15) o Restart Auto-Negotiation is asserted (register 0.9) o Power down (register 0.11) transitions from power down to normal operation o Link goes down 1 = Advertise 0 = Not advertised
7	100BASE-TX Half Duplex	Mode HW Rst SW Rst	R/W 1 Update	The value of this bit will be updated immediately after writing this register. But the value written to this bit does not takes effect until any one of the following occurs: o Software reset is asserted (register 0.15) o Restart Auto-Negotiation is asserted (register 0.9) o Power down (register 0.11) transitions from power down to normal operation o Link goes down 1 = Advertise 0 = Not advertised
6	10BASE-TX Full Duplex	Mode HW Rst SW Rst	R/W 1 Update	The value of this bit will be updated immediately after writing this register. But the value written to this bit does not takes effect until any one of the following occurs: o Software reset is asserted (register 0.15) o Restart Auto-Negotiation is asserted (register 0.9) o Power down (register 0.11) transitions from power down to normal operation o Link goes down 1 = Advertise 0 = Not advertised

Bit	Name	Т	уре	Description
5	10BASE-TX Half Duplex	Mode HW Rst	R/W 1	The value of this bit will be updated immediately after writing this register. But the value written to this bit does not takes effect until any one of the following occurs:
	I	SW Rst	Update	 o Software reset is asserted (register 0.15) o Restart Auto-Negotiation is asserted (register 0.9) o Power down (register 0.11) transitions from power down to normal operation o Link goes down 1 = Advertise 0 = Not advertised
4:0	Selector field	Mode HW Rst	RO Always 00001	Selector Field mode 00001 = 802.3
		SW Rst	Always 00001	

4.1.6 Auto-Negotiation Expansion Register

Bit	Name	T	уре	Description
15:5	RES	Mode	RO	Reserved. Must be 0.
		HW Rst	Always 0	
		SW Rst	Always 0	
4	Parallel Detection	Mode	RO, LH	1: a fault has been detect
	Fault	HW Rst	0	0: no fault has been detected
		SW Rst	0	
3	Link Partner Next	Mode	RO	1: Link partner is Next page able
	Page Able	HW Rst	0	0: Link partner is not next page able
		SW Rst	0	
2	Local Next Page	Mode	RO	1: Local Device is Next Page able
	Able	HW Rst	0	0: Local Device is not Next Page able
		SW Rst	0	

Bit	Name	T	уре	Description
1	Page Received	Mode	RO, LH	1 0
		HW Rst	0	0: No new page has been received
		SW Rst	0	
0	Link Partner Auto-	Mode	RO	1: Link partner is auto negotiation able
	Negotiation Able HW 0 Rst 0: Link partner is not auto negotiation able	0: Link partner is not auto negotiation able		
		SW Rst	0	

4.1.7 Link partner ability register(base page)

Bit	Name	Ту	/pe	Description
15	Next page	Mode	RO	Received Code Word Bit 15
		HW Rst	0	1 = Link partner capable of next page0 = Link partner not capable of next page
		SW Rst	0	
14	Ack	Mode	RO	Acknowledge
		HW Rst	0	Received Code Word Bit 14 1 = Link partner received link code word
		SW Rst	0	0 = Link partner does not have Next Page ability
13	Remote Fault	Mode	RO	Remote Fault
		HW Rst	0	Received Code Word Bit 13 1 = Link partner detected remote fault
		SW Rst	0	- 0 = Link partner has not detected remote fault
12	Reserved	Mode	RO	Technology Ability Field
		HW Rst	0	Received Code Word Bit 12
		SW Rst	0	
11	Asymmetric Pause	Mode	RO	Technology Ability Field
		HW Rst	0	Received Code Word Bit 11 1 = Link partner requests asymmetric pause
		SW Rst	0	0 = Link partner does not request asymmetric pause

Bit	Name	T	уре	Description
10	PAUSE	Mode	RO	Technology Ability Field Received Code Word Bit 10
		HW Rst	0	1 = Link partner is capable of pause operation
		SW Rst	0	0 = Link partner is not capable of pause operation
9	100BASE-T4	Mode	RO	Technology Ability Field
		HW Rst	0	Received Code Word Bit 9 1 = Link partner is 100BASE-T4 capable
		SW Rst	0	0 = Link partner is not 100BASE-T4 capable
8	100BASE-TX	Mode	RO	Technology Ability Field
	Full Duplex	HW Rst	0	Received Code Word Bit 8 1 = Link partner is 100BASE-TX full-duplex capable
		SW Rst	0	0 = Link partner is not 100BASE-TX full-duplex capable
7	100BASE-TX	Mode	RO	Technology Ability Field
	Half Duplex	HW Rst	0	Received Code Word Bit 7 1 = Link partner is 100BASE-TX half-duplex capable
		SW Rst	0	0 = Link partner is not 100BASE-TX half-duplex capable
6	10BASE-TX	Mode	RO	Technology Ability Field
	Full Duplex	HW Rst	0	Received Code Word Bit 6 1 = Link partner is 10BASE-T full-duplex capable
		SW Rst	0	0 = Link partner is not 10BASE-T full-duplex capable
5	10BASE-TX	Mode	RO	Technology Ability Field
	Half Duplex	HW Rst	0	Received Code Word Bit 5 1 = Link partner is 10BASE-T half-duplex capable
		SW Rst	0	0 = Link partner is not 10BASE-T half-duplex capable
4:0	Selector field	Mode	RO, LH	
		HW Rst	0	Received Code Word Bit 4:0
		SW Rst	0	

4.1.8 Function Control Register

Bit	Name	T	уре	Description
15:12	RES	Mode	R/W	Reserved
		HW Rst	0	
		SW Rst	Retain	
11	Assert CRS on	Mode	R/W	1 = when transmitting, crs_o is asserted to 1;
	Transmit	HW Rst	1	0 = crs_o is asserted to 1 only when receiving. When in RMII mode, this bit is fixed to 0.
		SW Rst	Retain	
10	RES	Mode	R/W	Reserved
		HW Rst	0	
		SW Rst	Retain	
9:7	RES	Mode	R/W	Reserved
		HW Rst	0	
		SW Rst	Retain	
6:5	MDI Crossover Mode	Mode	R/W	Changes to these bits are disruptive to the normal operation; therefore any changes to these registers must be followed by a
		HW Rst	11	software reset to take effect. 00 = Manual MDI configuration
		SW Rst	Update	01 = Manual MDIX configuration 10 = Reserved 11 = Enable automatic crossover for all modes
4:3	RES	Mode	R/W	Reserved
		HW Rst	0	
		SW Rst	Retain	
2	SQE Test	Mode	R/W	SQE Test is automatically disabled in full-duplex mode
		HW Rst	0	1 = SQE test enabled 0 = SQE test disabled
		SW Rst	Retain	
1	RES	Mode	R/W	Reserved
		HW Rst	1	
		SW Rst	Retain	

Bit	Name	Туре		Description
0	Disable Jabber	Mode	R/W	Jabber has effect only in 10BASE-T half-duplex mode.
		HW Rst	0	1 = Disable jabber function 0 = Enable jabber function
		SW Rst	Retain	

4.1.9 PHY Specific Status Register

Bit	Name	T	уре	Description
15:14	Speed	Mode	RO	These status bits are valid only after resolved bit 17.11 = 1. The resolved bit is set when Auto-Negotiation is completed or Auto-
		HW Rst	00	Negotiation is disabled. 11 = Reserved
		SW Rst	Retain	10 = Reserved 01 = 100 Mbps 00 = 10 Mbps
13	Duplex	Mode	RO	This status bit is valid only after resolved bit 17.11 = 1. The
		HW Rst		resolved bit is set when Auto-Negotiation is completed or Auto- Negotiation is disabled. 1 = Full-duplex
		SW Rst		0 = Half-duplex
12	Page Received	Mode	RO	1 = Page received
	(real-time)	HW Rst	0	0 = Page not received
		SW Rst	Retain	
11	Speed and Duplex	Mode	RO	When Auto-Negotiation is not enabled, 17.11 = 1 for force speed
	Resolved	HW Rst	0	mode. 1 = Resolved 0 = Not resolved
		SW Rst	0	0 – Not lesolveu
10	Link (real-time)	Mode	RO	1 = Link up
		HW Rst	0	0 = Link down
		SW Rst	0	
9:7	RES	Mode	RO	Reserved
		HW Rst	Always 0	
		SW Rst	Always 0	

Bit	Name	Ty	уре	Description
6	MDI Crossover Status	Mode HW Rst SW Rst	RO 0 Retain	This status bit is valid only after resolved bit 17.11 = 1. The resolved bit is set when Auto-Negotiation is completed or Auto- Negotiation is disabled. This bit is 0 or 1 depending on what is written to 16.6:5 in manual configuration mode. Register 16.6:5 are updated with software reset. 1 = MDIX 0 = MDI
5	Wirespeed Downgrade	Mode HW Rst SW Rst	RO 0 0	1 = Downgrade 0 = No Downgrade
4	RES	Mode HW Rst SW Rst	RO 1 1	Reserved
3	Transmit Pause Enabled	Mode HW Rst SW Rst	RO	This is a reflection of the MAC pause resolution. This bit is for information purposes and is not used by the device. This status bit is valid only after resolved bit 17.11 = 1. The resolved bit is set when Auto-Negotiation is completed; While in force mode, this bit is set to be 0. 1 = Transmit pause enabled 0 = Transmit pause disabled
2	Receive Pause Enabled	Mode HW Rst SW Rst	RO	This is a reflection of the MAC pause resolution. This bit is for information purposes and is not used by the device. This status bit is valid only after resolved bit 17.11 = 1. The resolved bit is set when Auto-Negotiation is completed; While in force mode, this bit is set to be 0. 1 = Receive pause enabled 0 = Receive pause disabled
1	Polarity (real-time)	Mode HW Rst SW Rst	RO 0 Retain	1 = Reversed 0 = Normal
0	Jabber (real-time)	Mode HW Rst SW Rst	RO 0 Retain	1 = Jabber 0 = No jabber

4.1.10 Interrupt Enable Register

Offset: 0x12

Bit 15	Name Auto-Negotiation Error Interrupt Enable	Туре		Description	
		Mode HW	R/W 0	1 = Interrupt enable 0 = Interrupt disable	
		Rst SW Rst	Retain		
14	Speed Changed Interrupt Enable	Mode	R/W	1 = Interrupt enable 0 = Interrupt disable	
		HW Rst	0		
		SW Rst	Retain		
13	Duplex Changed	Mode	R/W	1 = Interrupt enable	
	Interrupt Enable	HW Rst	0	0 = Interrupt disable	
		SW Rst	Retain		
12	Page Received	Mode	R/W	1 = Interrupt enable	
	Interrrupt Enable	HW Rst	0	0 = Interrupt disable	
		SW Rst	Retain		
11	Link Fail Interrupt Enable	Mode	R/W	1 = Interrupt enable	
		HW Rst	0	0 = Interrupt disable	
		SW Rst	Retain		
10	Link Success Interrupt Enable	Mode	R/W	1 = Interrupt enable	
		HW Rst	0	0 = Interrupt disable	
		SW Rst	Retain		
9	RES	Mode	R/W	Reserved	
		HW Rst	0		
		SW Rst	Retain		
8	RES	Mode	R/W	Reserved	
		HW Rst	0		
		SW Rst	0		

Bit	Name	Туре		Description	
7	RES	Mode	R/W	Reserved	
		HW Rst	0		
		SW Rst	Retain		
6	MDI Crossover Changed Interrupt Enable	Mode	R/W	1 = Interrupt enable	
		HW Rst	0	0 = Interrupt disable	
		SW Rst	Retain		
5	Wirespeed- downgrade Interrupt Enable	Mode	R/W	1 = Interrupt enable	
		HW Rst	0	0 = Interrupt disable	
		SW Rst	Retain		
4:2	RES	Mode	R/W	Reserved	
		HW Rst	000		
		SW Rst	Retain		
1	Polarity Changed Interrupt Enable	Mode	R/W	1 = Interrupt enable	
		HW Rst	0	0 = Interrupt disable	
		SW Rst	Retain		
0	Jabber Interrupt Enable	Mode	R/W	1 = Interrupt enable 0 = Interrupt disable	
		HW Rst			
		SW Rst			

4.1.11 Interrupt Status Register

Bit	Name	Туре		Description
15	Auto-Negotiation	Mode	RO, LH	An error is said to occur if MASTER/SLAVE does not resolve,
	Error	HW Rst	0	parallel detect fault, no common HCD, or link does not come up after negotiation is completed. 1 = Auto-Negotiation Error
		SW Rst	Retain	0 = No Auto-Negotiation Error

Bit	Name	T	уре	Description
14	Speed Changed	Mode	RO, LH	
		HW Rst	0	0 = Speed not changed
		SW Rst	Retain	
13	Duplex Changed	Mode	RO, LH	
		HW Rst	0	0 = Duplex not changed
		SW Rst	Retain	
12	Page Received	Mode	RO, LH	
		HW Rst	0	0 = Page not received
		SW Rst	Retain	
11	Link Fail Interrupt	Mode	RO, LH	
		HW Rst	0	0 = Link down not happened.
		SW Rst	Retain	
10		Mode	RO, LH	11
	Interrupt	HW Rst	0	0 = Link down not happened.
		SW Rst	Retain	
9	RES	Mode	RO, LH	Reserved
		HW Rst	0	
		SW Rst	Retain	
8	RES	Mode	RO	Reserved
		HW Rst	0	
		SW Rst	0	
7	RES	Mode	RO	Reserved
		HW Rst	0	
		SW Rst	0	
6	MDI Crossover Changed	Mode	RO, LH	0
	Changeu	HW Rst	0	0 = Crossover not changed
		SW Rst	Retain	

Bit	Name	T	уре	Description
5	Wirespeed-	Mode	RO, LH	1 0
	downgrade Interrupt	HW Rst	0	0 = No Wirespeed-downgrade.
		SW Rst	Retain	
4:2	RES	Mode	RO	Reserved
		HW Rst	000	
		SW Rst	000	
1	Polarity Changed	Mode	RO, LH	
		HW Rst	0	0 = Polarity not changed
		SW Rst	Retain	
0	Jabber	Mode	RO, LH	1 = Jabber
		HW Rst	0	0 = No jabber
		SW Rst	Retain	

4.1.12 Smart Speed Register

Bit	Name	Ту	уре	Description
15:11	RES	Mode	RO	Reserved. Must be 00000000.
		HW Rst	0	
		SW Rst	0	
10:9	Reserved	Mode	R/W	Reserved
		HW Rst	2′b00	
		SW Rst	Retain	
8	RES	Mode	RO	Reserved
		HW Rst	1′b0	
		SW Rst	Update	

Bit	Name	T	уре	Description
7:6	RES	Mode	R/W	Reserved
		HW Rst	0	
		SW Rst	Update	
5	Smartspeed_en	Mode	R/W	The default value is one; if this bit is set to one and cable inhibits
		HW Rst	1	completion of the training phase, then After a few failed attempts, the Atheros card automatically downgrades the highest ability to the next lower speed: from 100
		SW Rst	Update	to 10.
4:2	4:2 Smartspeed_retry_ limit	Mode	R/W	The default value is three; if these bits are set to three, then the
		HW Rst	3'b011	Atheros card will attempt five times before downgrading; The number of attempts can be changed through setting these bits.
		SW Rst	Update	
1	Bypass_smartspeed	Mode	R/W	The default value is zero; if this bit is set to one, the Smartspeed
	_timer	HW Rst	0	FSM will bypass the timer used for stability.
		SW Rst	Update	
0	RES	Mode	R/W	Reserved.
		HW Rst	0	
		SW Rst	0	

4.1.13 Receive Error Count Register

Offset: 0x15

Bit	Name	Ţ	/pe	Description
15:0	Receive Error	Mode	RO	Counter will peg at 0xFFFF and will not roll over.
	Count	HW Rst	0	(when rx_dv is valid, count rx_er numbers) (in this version, only for 100Base-T)
		SW Rst	0	

4.1.14 Virtual Cable Tester Control Register

Bit	Name	Ţ	уре	Description
15:11	Vct_dbg_psw	Mode	RO	For VCT debug
		HW Rst	0	
		SW Rst	0	
10	vct_wp_	Mode	RO	For VCT debug
	Max_vcode[3]	HW Rst	1′b1	
		SW Rst	Retain	
9:8	MDI Pair Select	Mode	R/W	Virtual Cable Tester [™] Control registers. Use the Virtual Cable
		HW Rst	00	Tester Control Registers to select which MDI pair is shown in the Virtual Cable Tester Status register. 00 = MDI[0] pair
		SW Rst	00	01 = MDI[1] pair
		KSt		10 = Reserved 11 = Reserved
7:5	vct_wp_	Mode	RO	For VCT debug
	Max_vcode[2:0]	HW Rst	3′Ъ111	
		SW Rst	Retain	
4:1	vct_np_	Mode	R/W	For VCT debug
	Max_vcode[3:0]	HW Rst	3'b100	
		SW Rst	Retain	

Bit	Name	Ту	уре	Description
0	Enable Test	Mode HW Rst SW Rst	R/W 0 Retain	When set, hardware automatically disable this bit when VCT is done. 1 = Enable VCT Test 0 = Disable VCT Test

4.1.15 LED Control Register

Bit	Name	Ту	уре	Description
15	Disable LED	Mode HW Rst	R/W 0	Control the output LED pins. 0 = Enable 1 = Disable
		SW Rst	Retain	
14:12	LED On Time	Mode	R/W	000 = 5 ms
		HW Rst	3′b011	001 = 10 ms 010 = 21 ms
		SW Rst		100 = 84 ms 101 = 168ms
11	Force Interrupt	Mode	RO	Always 0
		HW Rst	0	
		SW Rst	0	
10:8	LED Off Time	Mode	R/W	000 = 21 ms
		HW Rst	3′Ъ010	001 = 42 ms 010 = 84 ms
		SW Rst	0	011 =168 ms 100 =330 ms 101 = 670 ms 110 to 111 = 168ms
7:5	RES	Mode	RO	Reserved
		HW Rst	000	
		SW Rst	000	
4:3	LED_LINK Control	Mode	R/W	00 = Direct LED mode
		HW Rst	0	11 = Master/Slave LED mode 01, 10 = Combined LED modes
		SW Rst	Retain	

Bit	Name	Ту	уре	Description
2	RES	Mode	R/W	Reserved
		HW Rst	0	
		SW Rst	Retain	
1	RES	Mode	R/W	Reserved
		HW Rst	0	
		SW Rst	Retain	
0	RES	Mode	R/W	Reserved
		HW Rst	0	
		SW Rst	Retain	

4.1.16 Virtual Cable Tester Status Register

Bit	Name	Ту	уре	Description
15:10	RES	Mode	RO	Reserved
		HW Rst	0	
		SW Rst	0	
9:8	Status	Mode	RO	The content of the Virtual Cable Tester Status Registers applies to
		HW Rst	00	the cable pair selected in the Virtual Cable Tester™ Control Registers. 11 = Link-up state, no short or open in cable
		SW Rst	00	11 = Link-up state, no short of open in cable00 = Valid test, normal cable (no short or open in cable)10 = Valid test, open in cable (Impedance > 333 ohms)01 = Valid test, short in cable (Impedance < 33 ohms)
7:0	Delta_Time	Mode	R/W	Delta time indicates distance along the cable
		HW Rst	0	
		SW Rst	0	

4.1.17 Debug Port (Address Offset Set) Register

Offset: 0x1D

Bit	Name	Ту	уре	Description
15:6	RES	Mode	RO	Reserved
		HW Rst	0	
		SW Rst	0	
5:0	Addres Offset	Mode	R/W	The address index of the register will be written or read.
		HW Rst	0	
		SW Rst	0	

4.1.18 Debug Port 2 (R/W Port) Register

Bit	Name	Ţ	уре	Description
15:0	Debug Data Port	Mode	R/W	The data port for the debug register.
		HW Rst	0x02EE	Before accessing this register, you must set the address offset first.
		SW Rst	0x02EE	

4.2 Power Saving and Debug Register Summary

Offset	Register	Page
0x12	Test Configuration for 10Base-T	page 44
0x10	Test Configuration for 100Base-Tx	page 45
0x0B	Hibernate Control	page 47
0x29	Power Saving Control	page 48

Table 4-3. Register Summary

4.2.19 10Base-T Test Configuration Register

Bit	Name	Туре		Description			
15:14				Controls the interval that PHY detects whether the data frames			
		HW Rst	01	on the cable are MLT-3 coded. This logic is used to divide Manchester code from MLT-3 code.			
		SW Rst	Retain				
13:12	Triger_sel_timer	Mode	R/W	Controls the threshold that PHY detects at the end of the interval			
		HW Rst	00	whether the data frames on the cable are MLT-3 coded. This logic is used to divide Manchester code from MLT-3 code.			
		SW Rst	Retain				
11	En_mask_bt	Mode	R/W	1: enable the function of dividing Manchester code from MLT-3			
		HW Rst	1	code. 0: disable the function.			
		SW Rst	0				
10	10 En_10bt_idle		R/W	1: In 10BT mode , if there's no data or NLP to transmit, shut off			
		HW Rst	1	dac; otherwise turn on the dac; 0: In 10BT, dac will not be turn off.			
		SW Rst	0				
9:6	RES	Mode	RO	Reserved			
		HW Rst	1000				
		SW Rst	1000				
5	Test_mode[2]	Mode	R/W	bit 2 of test_mode			
		HW Rst	0				
		SW Rst	0				

Bit	Bit Name		уре	Description	
4	En_longcable	Mode HW Rst SW	R/W 0 Retain	Enable long cable test	
3	RES	Rst Mode HW Rst SW	R/W 0 Retain	Reserved	
2	Loopback mode select	Rst Mode HW Rst	RO 1	1: lpbk2-deep in Loopback mode 0: lpbk1-shallow in Loopback mode (connect to dig10.test_mode_i[0])	
		SW Rst	1		
1:0	Test_mode[1:0]	Mode HW Rst	R/W 0	[001]: packet with all ones, 10MHz sine wave, For harmonic test. [010]: pseudo random, for TP_IDLE/Jitter/Differential Voltage test. [011]: normal link pulse only,	
		SW Rst	0	[100]: 5MHz sin wave. Others: normal mode.	

4.2.20 100Base-TX Test Configuration Register

Bit	Name	Туре		Description		
15	RES	Mode	R/W	Reserved		
		HW Rst	0			
		SW Rst	Retain			
14:8	RES	Mode	R/W	Reserved		
		HW Rst	0111001			
		SW Rst	Retain			
7	Jitter_test	Mode	R/W	100Base-Tx Jitter test		
		HW Rst	0			
		SW Rst	Retain			

Bit	Name	Туре		Description	
6	Os_test	Mode	R/W	100Base-Tx Overshoot test	
		HW Rst	0		
		SW Rst	Retain		
5	Dcd_test	Mode	R/W	100Base-Tx DCD test	
		HW Rst	0		
		SW Rst	Retain		
4	RES	Mode	R/W	Reserved	
		HW Rst	0		
		SW Rst	0		
3	RES	Mode	R/W	Reserved	
		HW Rst	0		
		SW Rst	0		
2	RES	Mode	R/W	Reserved	
		HW Rst	0		
		SW Rst	0		
1	RES	Mode	R/W	Reserved	
		HW Rst	0		
		SW Rst	0		
0	RES	Mode	R/W	Reserved	
		HW Rst	0		
		SW Rst	0		

4.2.21 Hibernate Control Register

Bit	Name	Туре		Description	
15	Ps_hib_en	Mode	RO	Power hibernate conrol bit;	
		HW Rst	1	'1' : hibernate enable	
		SW Rst	0	'0' : hibernate disable	
14	RES	Mode	RO	Reserved	
		HW Rst	0		
		SW Rst	0		
13	RES	Mode	RO	Reserved	
		HW Rst	1		
		SW Rst	1		
12	RES	Mode	RO	Reserved	
		HW Rst	1		
		SW Rst	1		
11	RES	Mode	RO	Reserved	
		HW Rst	1		
		SW Rst	1		
10	RES	Mode	RO	Reserved	
		HW Rst	1		
		SW Rst	1		
9:0	RES	Mode	RO	Reserved	
		HW Rst	0		
		SW Rst	0		

4.2.22 Power Saving Control

Bit	Bit Name		уре	Description		
15	TOP_PS_EN	Mode	RO	'1' : Top level Power Saving Enable		
		HW Rst	1	'0' : Top level Power Saving Disable		
		SW Rst	Retain			
14:12	RES	Mode	R/W	Reserved		
		HW Rst	3′h3			
		SW Rst	Retain			
11:9	Dac_amp_100	Mode	R/W	Control amplitude of transmit signal in 100BT mode.		
		HW Rst	3′h3	000: -2%		
		SW Rst	Retain			
				111: +12%		
8:6	Dac_amp_10	Mode	R/W	Control amplitude of transmit signal in 10BT mode.		
		HW Rst	3′h3	000: -2%		
		SW Rst	Retain	- 		
				111: +12%		
5:1	RES	Mode	R/W	Reserved		
		HW Rst	10010			
		SW Rst	10010			
0	RES	Mode	R/W	Reserved		
		HW Rst	1			
		SW Rst	Retain			

5. Package Dimensions

The AR8032 is packaged in a QFN 32. The body size is 5 mm by 5 mm. The package drawings

and dimensions are provided in Figure 5-1 and Table 5-1.

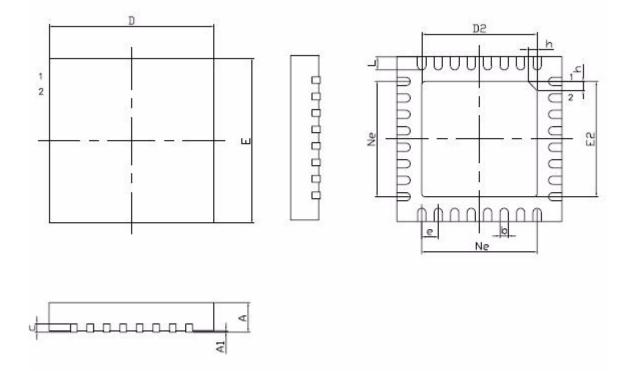


Figure 5-1. Package Views

Dimension Label	Min	Nom	Max	Unit
А	0.70	0.75	0.80	mm
A1	—	0.01	0.05	mm
b	0.18	0.25	0.30	mm
С	0.18	0.20	0.25	mm
D	4.90	5.00	5.10	mm
D2			mm	
е		0.50 Basic	mm	
Ne		mm		
Е	4.90	5.00	5.10	mm
E2		mm		
L	0.35	0.40	0.45	mm
h	0.30	0.35	0.40	mm

Table 5-1. Package Dimensions

Notes:

1. Dimensioning and tolerences conform to JEDEC MO-220 $\,$

6. Ordering Information

The order number AR8032-BL1A specifies a Commercial version of the AR8032. The order number AR8032-BL1B specifies an Industrial version of the AR8032.

The information in this document has been carefully reviewed and is believed to be accurate. Nonetheless, this document is subject to change without notice. Atheros assumes no responsibility for any inaccuracies that may be contained in this document, and makes no commitment to update or to keep current the contained information, or to notify a person or organization of any updates. Atheros reserves the right to make changes, at any time, to improve reliability, function or design and to attempt to supply the best product possible.

Document Number: 981-00072-001

MKG-1359 Rev. 2

Atheros Communications, Incorporated 5480 Great America Parkway Santa Clara, CA 95054 t: 408/773-5200 f: 408/773-9940 www.atheros.com

